
 Tcl3D: Doing 3D with Tcl

Tcl3D: Doing 3D with TclTcl3D: Doing 3D with Tcl

1 INTRODUCTION .. 2
1.1 Architecture overview ... 2
1.2 Modules overview ... 3
1.3 Supported platforms ... 6
1.4 Getting started .. 7

2 INSTALLATION ... 10
2.1 Installation of a binary distribution .. 11
2.2 Installation of a source distribution ... 12
2.3 Extending Tcl3D ... 16

3 WRAPPING IN DETAIL .. 18
3.1 Wrapping description .. 18
3.2 Wrapping reference card .. 23

4 MODULES IN DETAIL ... 24
4.1 tcl3dTogl: Enhanced Togl widget ... 24
4.2 tcl3dUtil: Tcl3D utility library ... 27
4.3 tcl3dOgl: Wrapper for basic OpenGL functionality .. 42
4.4 tcl3dOglExt: Wrapper for enhanced OpenGL functionality ... 45
4.5 tcl3dCg: Wrapper for NVidia’s Cg shading language .. 46
4.6 tcl3dSDL: Wrapper for the Simple DirectMedia Library .. 46
4.7 tcl3dFTGL: Wrapper for the OpenGL Font Rendering Library .. 47
4.8 tcl3dGl2ps: Wrapper for the OpenGL To Postscript Library .. 48
4.9 tcl3dOde: Wrapper for the Open Dynamics Engine .. 48
4.10 tcl3dGauges: Tcl3D package for displaying gauges ... 49
4.11 tcl3dDemoUtil: C/C++ based utilities for demo applications ... 49

5 MISCELLANEOUS TCL3D INFORMATION .. 51
5.1 License information .. 51
5.2 Programming hints ... 51
5.3 Open issues ... 52
5.4 Known bugs ... 53
5.5 Starpack internals ... 53

6 DEMO APPLICATIONS ... 55

7 RELEASE NOTES ... 56
7.1 Release history .. 56
7.2 Obsolete functions .. 58

8 REFERENCES ... 60

Tcl3D User Manual Version 0.3.3, September 2008 Page 1 of 61
Copyright © 2005-2008 by Paul Obermeier. All rights reserved.

1 Introduction Tcl3D: Doing 3D with Tcl

1 Introduction

Tcl3D enables the 3D functionality of OpenGL and various other portable 3D libraries at the Tcl
scripting level.
It’s main design requirement is to wrap existing 3D libraries without modification of their header
files and with minimal manual code writing. The Tcl API shall be a direct wrapping of the C/C++
based library API’s, with a “natural” mapping of C types to according Tcl types.

This is accomplished mostly with the help of SWIG [22], the Simplified Wrapper and Interface
Generator.

Tcl3D is based on ideas of Roger E. Critchlow, who formerly created an OpenGL Tcl binding
called Frustum [28].

1.1 Architecture overview

The Tcl3D package currently consists of the following building blocks, also called modules
throughout the manual:

Tcl3D core modules
tcl3dTogl Enhanced Togl widget, a Tk widget for displaying OpenGL content.

tcl3dUtil Tcl3D utility library (math functions, shapes, stop watch, et al).
tcl3dOgl Wrapper for basic OpenGL functionality (GL Version 1.1, GLU Version 1.2).
Tcl3D optional modules
tcl3dOglExt Wrapper for enhanced OpenGL functionality (GL Version 1.2 through 2.0) and

OpenGL extensions.

tcl3dCg Wrapper for NVidia’s Cg shading language.
tcl3dSDL Wrapper for the Simple DirectMedia Library.
tcl3dFTGL Wrapper for the OpenGL Font Rendering library.
tcl3dGl2ps Wrapper for the OpenGL To Postscript library.
tcl3dOde Wrapper for the Open Dynamics Engine.

tcl3dGauges Tcl3D package for displaying gauges.
tcl3dDemoUtil C/C++ based utility functions for some of the demo applications.

Table 1.1: Overview of Tcl3D modules

Each module is implemented as a separate Tcl package, similar to the Tcl standard library
Tcllib. All Tcl3D subpackages can be loaded with a single package require tcl3d.

Tcl3D User Manual Version 0.3.3, September 2008 Page 2 of 61
Copyright © 2005-2008 by Paul Obermeier. All rights reserved.

1 Introduction Tcl3D: Doing 3D with Tcl

The next figure shows the currently available modules of Tcl3D.

1.2 Modules overview

This chapter gives a short overview of the modules available in Tcl3D.

1.2.1 tcl3dTogl: Enhanced Togl widget

This module is an enhanced version of the Togl [6] widget, a Tk widget for displaying OpenGL
graphics.

The following enhancements are currently implemented:
• Callback functions in Tcl.

Tcl3D User Manual Version 0.3.3, September 2008 Page 3 of 61
Copyright © 2005-2008 by Paul Obermeier. All rights reserved.

Illustration 1.2: Overview of Tcl3D modules

Illustration 1.1: Tcl3D package layout

The Tcl3D Modules

Tcl-Level

C/C++-Level

SWIG generated Tcl interfaces

Tcl3D Demos and Applications

tcl3dUtil
Tcl-based Utilities

tcl3dGauges
Tcl Extension Package

Tcl-Interface

tcl3dOgl
Basic OpenGL

tcl3dOglExt
Extended OpenGL

tcl3dUtil
C-based Utilities

tcl3dTogl
OpenGL Widget

tcl3dCg
Cg Shading

tcl3dFTGL
Font Rendering

tcl3dSDL
Joystick and CD

tcl3dGl2ps
OpenGL to PS/PDF

tcl3dOde
Physics Engine

tcl3dDemoUtil
C utilities for demos

1 Introduction Tcl3D: Doing 3D with Tcl

• Better bitmap font support.
• Multisampling support.
• Swap Interval support.

A detailled description of this module can be found in chapter 4.1.

1.2.2 tcl3dUtil: Tcl3D utility library

This module implements C/C++ and Tcl utilities offering basic functionality needed for 3D
programs. It currently contains the following submodules:

• 3D vector and transformation matrix module
• Information module
• File utility module
• Color names module
• Large data module (tcl3dVector)
• Image utility module
• Screen capture module
• Timing module
• Random number module
• 3D-model and shapes module
• Virtual track- and arcball module

A detailled description of this module can be found in chapter 4.2.

1.2.3 tcl3dOgl: Wrapper for basic OpenGL functionality

This module wraps OpenGL functionality based on OpenGL Version 1.1, as well as the GLU
library functions based on Version 1.2. This is due to the fact, that Windows still does not
support newer versions of OpenGL. OpenGL features defined in newer versions have to be
accessed via the OpenGL extension mechanism on Windows.
Standard shapes (box, sphere, cylinder, teapot, …) with a GLUT compatible syntax are supplied
here, too.

A detailled description of this module can be found in chapter 4.3.

1.2.4 tcl3dOglExt: Wrapper for enhanced OpenGL functionality

This module wraps OpenGL functionality based on versions 1.2 till 2.0, lots of OpenGL
extensions not contained in the OpenGL core, as well as Windows specific extensions. It is
implemented with the help of the OglExt [13] library.
The files of this module are contained in the same directory as the basic OpenGL wrapper files
for practial compilation reasons.

This is an optional module.

A detailled description of this module can be found in chapter 4.4.

1.2.5 tcl3dCg: Wrapper for NVidia’s Cg shading language

This module wraps NVidia’s Cg [7] shader library based on version 1.5.0015 and adds some Cg
related utility procedures.

This is an optional module.

A detailled description of this module can be found in chapter 4.5.

Tcl3D User Manual Version 0.3.3, September 2008 Page 4 of 61
Copyright © 2005-2008 by Paul Obermeier. All rights reserved.

1 Introduction Tcl3D: Doing 3D with Tcl

1.2.6 tcl3dSDL: Wrapper for the Simple DirectMedia Library

This module wraps the SDL [8] library based on version 1.2.9 and adds some SDL related utility
procedures.
Currently only the functions related to joystick and CD-ROM handling have been wrapped and
tested.

This is an optional module.

A detailled description of this module can be found in chapter 4.6.

1.2.7 tcl3dFTGL: Wrapper for the OpenGL Font Rendering Library

This module wraps the FTGL [9] library based on version 2.1.2 and adds some FTGL related
utility procedures.

The following font types are available:
• Bitmap font (2D)
• Pixmap font (2D)
• Outline font
• Polygon font
• Texture font
• Extruded font

This is an optional module.

A detailled description of this module can be found in chapter 4.7.

1.2.8 tcl3dGl2ps: Wrapper for the OpenGL To Postscript Library

This module wraps the GL2PS [11] library based on version 1.3.2 and adds some GL2PS
related utility procedures.

GL2PS is a C library providing high quality vector output (PostScript, PDF, SVG) for an OpenGL
application.

This is an optional module.

A detailled description of this module can be found in chapter 4.8.

1.2.9 tcl3dOde: Wrapper for the Open Dynamics Engine

This module wraps the OpenSource physics engine ODE [12] based on version 0.7 and adds
some ODE related utility procedures.

This is an optional module.

N o t e This module is still work in progress. It’s interface may change in the future.

A detailled description of this module can be found in chapter 4.9.

1.2.10 tcl3dGauges: Tcl3D package for displaying gauges

This package implements the following gauges as a pure Tcl package: airspeed, altimeter,
compass, tiltmeter.

Tcl3D User Manual Version 0.3.3, September 2008 Page 5 of 61
Copyright © 2005-2008 by Paul Obermeier. All rights reserved.

1 Introduction Tcl3D: Doing 3D with Tcl

This is an optional module.

A detailled description of this module can be found in chapter 4.10.

1.2.11 tcl3dDemoUtil: C/C++ based utilities for demo applications

This package implements several C/C++ based utility functions for some of the demo
applications.

This is an optional module.

A detailled description of this module can be found in chapter 4.11.

1.3 Supported platforms

The following table gives an overview, which modules are available on the supported operating
systems. It also tries to give an indication on the quality of the module.

Windows
 32-bit

Linux
32-bit

Linux
64-bit

Mac OS X
32-bit (Intel)

IRIX 6.5
n32

Module Wrap Test Wrap Test Wrap Test Wrap Test Wrap Test
tcl3dTogl ++ ++ ++ ++ ++ ++ ++ + ++ +
tcl3dUtil ++ ++ ++ ++ ++ ++ ++ ++ ++ +
tcl3dOgl ++ ++ ++ ++ ++ ++ ++ + ++ +
tcl3dOglExt ++ ++ ++ ++ ++ ++ ++ + ++ +
tcl3dCg ++ ++ ++ ++ ++ ++ ++ + - -
tcl3dSDL + ++ + ++ + ++ + 0 + +
tcl3dFTGL ++ + ++ + ++ + ++ 0 ++ +
tcl3dGl2ps ++ + ++ + ++ + ++ + ++ +
tcl3dOde + 0 + 0 + 0 + 0 + 0
tcl3dGauges ++ + ++ + ++ + ++ + ++ +
tcl3dDemoUtil ++ ++ ++ ++ ++ ++ ++ ++ ++ +

Table 1.2: Availability of Tcl3D modules

Legend for Table 1.2 :

Column Wrap Column Test
++ Interface of module fully wrapped. ++ Module extensively tested. No errors known.
+ Interface of module partially wrapped. + Module tested. Minor errors known.
0 Module not yet wrapped. 0 Module in work.
- Module not available for the platform. - Module not available for the platform.

Short summary:
The Windows and Linux ports are supported best and are regularly tested on different hardware
combinations.
On IRIX every module (except Cg, which is not available for SGI) has been wrapped and seems
to be running fine, but no extensive tests have been done.
The OS X port is in it's first stage, and needs another iteration of extensive testing.

Tcl3D User Manual Version 0.3.3, September 2008 Page 6 of 61
Copyright © 2005-2008 by Paul Obermeier. All rights reserved.

1 Introduction Tcl3D: Doing 3D with Tcl

1.4 Getting started

The easiest way to get started, is using a Tcl3D starpack. Starpacks for Windows, Linux, IRIX
and Mac OS X (Intel based) can be downloaded from http://www.tcl3d.org/. See chapter 2 for a
detailled information about all available Tcl3D packages.

The only prerequisite needed for using the Tcl3D starpack distribution is an installed OpenGL
driver. Everything else - even the Tcl interpreter - is contained in the starpack.

The starpacks are distributed as a ZIP-compressed file. Unzipping this file creates a directory
containing the starpack tcl3dsh-OS-VERSION. Distributions for Unix systems contain an
additional shell script tcl3dsh-OS-VERSION.sh, which should be used for starting the Tcl3D
starpack.
After starting the starpack, a toplevel Tk window labeled Tcl3D as well as a console window
labeled Tcl3D Console should appear, similar to starting a wish shell.
The console window should contain the following two message lines as well as a tcl3d prompt:

Type "pres" to start Tcl3D presentation.
Type "inst" to write the Tcl3D installation packages to disk.
tcl3d>

Typing pres in the console window, starts the Tcl3D presentation showing an introductionary
animation as shown in the screenshot below. The available key and mouse bindings are shown
in the console window.

Tcl3D User Manual Version 0.3.3, September 2008 Page 7 of 61
Copyright © 2005-2008 by Paul Obermeier. All rights reserved.

Illustration 1.3: Tcl3D presentation intro

http://www.tcl3d.org/

1 Introduction Tcl3D: Doing 3D with Tcl

Binding Action
Key-Escape Exit the program
Key-Left Move text to the left
Key-Right Move text to the right
Key-i Increase distance from viewer
Key-d Decrease distance from viewer
Key-Up Increase speed
Key-Down Decrease speed
Key-plus Rotate text
Key-minus Rotate text (other direction)
Key-space Set speed of text to zero
Key-r Reset speed and position of text

Mouse-1 Start animation
Mouse-2 Stop animation

Table 1.3: Tcl3D presentation shortcuts

The presentation can also be started directly by using -pres as a command line parameter to
the Tcl3D starpack.

Description of the Tcl3D starpack

The Starpack tcl3dsh can be used as
• a standalone executable like wish with builtin Tcl3D
• a test and presentation program for Tcl3D
• an installer for the Tcl3D specific libraries, the external libraries and demo programs

The Tcl3D presentation is divided into 3 sections:
• Information and installation
• Help and documentation
• Demos and tutorials

The information menu gives you access to different types of information (OpenGL,
Tcl3D, ...), which are shown as animated OpenGL text. More detailed information can
be obtained by using the tcl3dInfo.tcl script located in the demos directory in category
Tcl3DSpecific.
The help and documentation menu gives you some online information about how to
use the Tcl3D presentation framework.

The demo and tutorials menu has lots of sample programs, divided into 3 categories:
• Library specific demos contains scripts showing features specific to the

wrapped library.
• Tutorials and books contains scripts, which have been converted from C to

Tcl3D, coming from the following sources:
OpenGL Red Book
NeHe tutorials
Kevin Harris CodeSampler web site
Vahid Kazemi’s GameProgrammer page

• Tcl3D specific demos contains scripts demonstrating and testing Tcl3D specific
features.

Some notes about the demos contained in the Starpack:

Tcl3D User Manual Version 0.3.3, September 2008 Page 8 of 61
Copyright © 2005-2008 by Paul Obermeier. All rights reserved.

1 Introduction Tcl3D: Doing 3D with Tcl

Depending on your operating system, graphics card and driver, some of the programs may
raise an error message or will not work properly.
As the demos contained within the Starpack were written to be standalone programs, no error
recovery was implemented. The programs typically just quit. This is, why you may get a
confirmation window from time to time, asking you, if you want to quit the show.
In most cases, you may proceed with other demos, but be warned, that strange effects may
occur.

Tcl3D User Manual Version 0.3.3, September 2008 Page 9 of 61
Copyright © 2005-2008 by Paul Obermeier. All rights reserved.

2 Installation Tcl3D: Doing 3D with Tcl

2 Installation

Precompiled packages for Windows, Linux, Intel based Mac OS X and IRIX, the source code of
the Tcl3D package as well as test and demonstration programs can be downloaded from the
Tcl3D home page at http://www.tcl3d.org.

Please report problems or errors to info@tcl3d.org.

Use the following script when sending bug reports or questions to supply me with information
about your environment.

catch { console show }

package require tcl3d
togl .t

Print information about the OS.
parray tcl_platform

Print information about the Tcl3D modules.
puts [tcl3dGetPackageInfo]

Print information about the OpenGL driver.
puts [tcl3dOglGetVersions]

If it's a problem with an OpenGL extension, you should also
include the output of the following statement:
puts [tcl3dOglGetExtensions]

The following distribution packages are currently available. Which packages are needed,
depends on the proposed usage. See the next chapters for detailed information.

Tcl3D User Manual Version 0.3.3, September 2008 Page 10 of 61
Copyright © 2005-2008 by Paul Obermeier. All rights reserved.

mailto:info@tcl3d.org
http://www.tcl3d.org/

2 Installation Tcl3D: Doing 3D with Tcl

Documents
Tcl3D-Manual-VERSION.odt Tcl3D user manual (this document). OpenOffice format.
Tcl3D-Manual-VERSION.pdf Tcl3D user manual (this document). PDF format.
Tcl3D-RefManual-VERSION.pdf Tcl3D reference manual.
Tcl3D-DemoRef-VERSION.pdf Tcl3D demo programs reference.

Demos
tcl3d-demos-VERSION.zip Tcl3D demo sources.
tcl3d-demoimgs-VERSION.zip Screenshots of all Tcl3D demo programs.

Starpacks
tcl3dsh-win32-VERSION.zip Tcl3D Starpack for Windows.
tcl3dsh-Linux-VERSION.zip Tcl3D Starpack for 32-bit Linux.
tcl3dsh-Linux64-VERSION.zip Tcl3D Starpack for 64-bit Linux.
tcl3dsh-Darwin-VERSION.zip Tcl3D Starpack for Mac OS X.
tcl3dsh-IRIX64-VERSION.zip Tcl3D Starpack for SGI IRIX.

Binary packages
tcl3d-win32-VERSION.zip External libraries (DLL's) and Tcl3D package for Windows.
tcl3d-Linux-VERSION.zip External libraries (DSO's) and Tcl3D package for 32-bit Linux.
tcl3d-Linux64-VERSION.zip External libraries (DSO's) and Tcl3D package for 64-bit Linux.
tcl3d-Darwin-VERSION.zip External libraries (DSO's) and Tcl3D package for Mac OS X.
tcl3d-IRIX64-VERSION.zip External libraries (DSO's) and Tcl3D package for SGI IRIX.

Sources
tcl3d-src-VERSION.zip Tcl3D source distribution.
tcl3d-starpack-VERSION.zip Tcl3D sources for creating Starpacks.

Table 2.1: Tcl3D distribution packages

The term VERSION is a template for the Tcl3D version number, i.e. for the currently available
version it must be replaced with 0.3.3.

2.1 Installation of a binary distribution

There are two possibilities to install a Tcl3D binary distribution onto your computer.

2.1.1 Installation from a Tcl3D starpack

The following prerequisites are needed when installing from a Tcl3D starpack:
• An OpenGL driver suitable for your graphic card. It is recommend to download and install

an up-to-date OpenGL driver from the manufacturer of your graphic card, especially if
intending to write shader programs in GLSL or Cg.

Download, unzip and start a Tcl3D starpack presentation as described in chapter 1.4.

In the right menu pane, you will see 3 buttons in the Installation and Information menu (see
Illustration 1.3 on page 7).
These allow you to extract the Tcl3D packages (tcl3d0.3.3), the external libraries (extlibs) and
the demo programs (demos) onto the file system, so you can use Tcl3D from tclsh or wish.

• The Tcl3D package folder (tcl3d0.3.3) should be copied into the library section of your Tcl
installation (ex. C:\Tcl\lib). If write access to this Tcl directory is not permitted, you can
copy the tcl3d0.3.3 directory somewhere else, eg. C:\mytcl3d or /home/user/mytcl3d. To
have Tcl look for packages in this location, you must set the TCLLIBPATH environment
variable with the above specified directory name as value. Note, that on Windows the path
must be written with slashes (not backslashes): set TCLLIBPATH = C:/mytcl3d

Tcl3D User Manual Version 0.3.3, September 2008 Page 11 of 61
Copyright © 2005-2008 by Paul Obermeier. All rights reserved.

2 Installation Tcl3D: Doing 3D with Tcl

• The files contained in the external libraries folder (extlibs) should be copied into a
directory, which is listed in your PATH environment variable (Windows) or your
LD_LIBRARY_PATH environment variable (Unix).

• The demonstration programs folder (demos) can be copied to any convenient place of
your file system.

Now you are ready for using Tcl3D from a standard Tcl interpreter by starting a tclsh or wish
program and issuing the following command: package require tcl3d.

Alternatively you can extract the 3 installation folders with one of the following methods:
• Start the Tcl3D starpack and issue the command inst in the console.
• Start the Tcl3D starpack with command line parameter -inst.

Both steps will copy the 3 above described package folders into the directory containing the
starpack.

2.1.2 Installation from a binary package

The following prerequisites are needed when using a Tcl3D binary package:
• An OpenGL driver suitable for your graphic card. It is recommend to download and install

an up-to-date OpenGL driver from the manufacturer of your graphic card, especially if
intending to write shader programs in GLSL or Cg.

• A Tcl/Tk version greater or equal to 8.4.
• The Img extension is needed to have access to various image formats, which are used as

OpenGL textures.
• For some demos the snack extension is used.
• To generate screenshots from the Tcl3D presentation, the Twapi extension is needed on

Windows.
It is therefore recommended to use an ActiveTcl distribution [23], which contains all of the above
listed Tcl extensions.

Download and unzip the following distribution packages suitable for your operating system:
• tcl3d-OS-0.3.3.zip
• tcl3d-demos-0.3.3.zip

Then copy the resulting folders into the appropriate directories as described in the previous
chapter.

2.2 Installation of a source distribution

This chapter outlines the general process of compiling, customizing and installing the Tcl3D
package. See the file Readme.txt in the source code distribution for additional up-to-date
information.

2.2.1 Step 1: Prerequisites

The following prerequisites are needed when using a Tcl3D source package:
• An OpenGL driver suitable for your graphic card. It is recommend to download and install

an up-to-date OpenGL driver from the manufacturer of your graphic card, especially if
intending to write shader programs in GLSL or Cg.

• A Tcl/Tk version greater or equal to 8.4.
• The Img extension is needed to have access to various image formats, which are used as

OpenGL textures.
• For some demos the snack extension is used.

Tcl3D User Manual Version 0.3.3, September 2008 Page 12 of 61
Copyright © 2005-2008 by Paul Obermeier. All rights reserved.

2 Installation Tcl3D: Doing 3D with Tcl

• To generate screenshots from the Tcl3D presentation, the Twapi extension is needed on
Windows.

It is therefore recommended to use an ActiveTcl distribution [23], which contains all of the above
listed Tcl extensions.

To build the Tcl3D modules from source, the following additional tools need to be installed and
accessable from the command line:

Tool Version URL
GNU make >= 3.79 http://www.gnu.org/
SWIG >= 1.3.19 http://www.swig.org/

Table 2.2: Tools for building Tcl3D

N o t e
• A binary version of SWIG version 1.3.24 for IRIX is available from my private home page

http://www.posoft.de/.
• Tcl3D is currently generated and tested with SWIG versions 1.3.24 and 1.3.29. These

versions are recommended.
• See chapter 5.4 for known bugs with other SWIG versions.

Download and unzip the following distribution packages suitable for your operating system:
• tcl3d-src-0.3.3.zip
• tcl3d-OS-0.3.3.zip
• tcl3d-demos-0.3.3.zip
• tcl3d-starpack-0.3.3.zip

Example installation procedures

Version 1: Tcl3D-Basic: OpenGL support, no external libraries
Needed: tcl3d-src-0.3.3.zip
Recommended: tcl3d-demos.0.3.3.zip

Unzip tcl3d-src-0.3.3.zip in a folder of your choice. This creates a new folder tcl3d
containing the sources. Unzip tcl3d-demos.0.3.3.zip into the new folder tcl3d.
If only basic OGL support is needed, comment all WRAP_* macros in file make.wrap.
For extended OpenGL support, leave the macro WRAP_OGLEXT uncommented. See chapter
2.2.3 Step 3: Customization for details.
The presentation framework presentation.tcl works, but the texts are displayed as 2D bitmaps
only. Most OpenGL only demos should work.

Version 2: Tcl3D-Complete: OpenGL support plus optional external libraries
Needed: tcl3d-src-0.3.3.zip
Needed: tcl3d-OS-0.3.3.zip
Recommended: tcl3d-demos.0.3.3.zip

Unzip tcl3d-src-0.3.3.zip in a folder of your choice. This creates a new folder tcl3d
containing the sources. Unzip tcl3d-demos.0.3.3.zip into the new folder tcl3d. Unzip
tcl3d-OS-0.3.3.zip into a temporary folder. Then copy the dynamic libraries contained in
subfolder extlibs/OS into a directory, which is listed in your PATH environment variable
(Windows) or your LD_LIBRARY_PATH environment variable (Unix).
If you want to build the tcl3dCg module, you have to download and install the Cg toolkit version
1.5.0015 from [7]. After installation, copy all the Cg header files into the tcl3dCg/Cg directory.
These files are not included because of license issues. The dynamic libraries of Cg are included
in the Tcl3D distribution package tcl3d-OS-0.3.3.zip.

Tcl3D User Manual Version 0.3.3, September 2008 Page 13 of 61
Copyright © 2005-2008 by Paul Obermeier. All rights reserved.

http://www.posoft.de/
http://www.swig.org/
http://www.gnu.org/

2 Installation Tcl3D: Doing 3D with Tcl

If you want to wrap only a sub-set of the supported optional modules, edit the make.wrap file
appropriately. See chapter 2.2.3 Step 3: Customization for details.

Version 3: Tcl3D-Star: Tcl3D-Basic or Tcl3D-Complete with Starpack support
Needed: Installation of Version 1 or 2
Needed: tcl3d-starpack-0.3.3.zip

Perform the steps as described for Version 1 or 2. Additionally copy the folder extlibs contained
in distribution package tcl3d-OS-0.3.3.zip into the source code folder tcl3d. Then unzip
tcl3d-starpack-0.3.3.zip into the source code folder tcl3d.

N o t e
The starpack distribution package contains Tclkits for all supported operating systems, as well
as supporting Tcl packages needed for the Tcl3D demonstration programs.

2.2.2 Step 2: Configuration

Before compiling, edit the appropriate config_* file to fit your platform/compiler combination:

Operating system Compiler Configuration file
Windows Visual C++ 6.0, 7.1, 8.0 config_win32
Windows CygWin (gcc) config_cygwin
Windows MinGW (gcc) config_msys
Linux (32-bit) gcc config_Linux
Linux (64-bit) gcc config_Linux64
Mac OS X gcc config_Darwin
SGI IRIX 6.5 gcc, MIPS Pro 7.3 config_IRIX64

Table 2.3: Tcl3D configuration files

N o t e For Unix systems, the name after the underscore is derived from the Unix commands
uname -s and uname -m. See the file make.oscheck for details on the mapping of the
command output.

The following lines in the config_* files may be edited:

WITH_DEBUG If you don't want debug information, remove ALL characters after the
equal sign.

INSTDIR Set to your prefered installation directory.
TCLDIR Set to where your Tcl installation is located on disk.
TCLMINOR Set to your installed Tcl minor version.

Table 2.4: Tcl3D configuration variables

Examples:

Compile with debugging information. The Tcl installation is located in /usr/local. We install the
Tcl3D package into the same location as the Tcl distribution. The installed Tcl version is 8.4.

WITH_DEBUG = 1
INSTDIR = /usr/local
TCLDIR = /usr/local
TCLMINOR = 4

Tcl3D User Manual Version 0.3.3, September 2008 Page 14 of 61
Copyright © 2005-2008 by Paul Obermeier. All rights reserved.

2 Installation Tcl3D: Doing 3D with Tcl

Compile without debugging information. The Tcl installation is located in C:\Programme\Tcl.
We install the Tcl3D package into a separate directory. The installed Tcl version is 8.4.

WITH_DEBUG =
INSTDIR = C:\Programme\Tcl
TCLDIR = C:\Programme\poSoft
TCLMINOR = 4

Instead of editing the configuration file, you may alternatively create a file called make.private
in the top level directory of Tcl3D and add lines according to your needs.

ifeq ($(MACHINE),win32)
INSTDIR = F:\Programme\poSoft
TCLDIR = F:\Programme\Tcl
endif
ifeq ($(CONFIG),mingw)
INSTDIR = F:/Programme/poSoft
TCLDIR = F:/Programme/Tcl
endif

2.2.3 Step 3: Customization

The optional modules can be included or excluded from the comilation step by setting the
following macros in file make.wrap in the top level directory of the Tcl3D source tree.

Macro name Description Additional check file
WRAP_OGLEXT Customize support for tcl3dOglExt OglExt/glext.h
WRAP_CG Customize support for tcl3dCg Cg/cg.h
WRAP_SDL Customize support for tcl3dSDL include/SDL.h
WRAP_FTGL Customize support for tcl3dFTGL include/FTGL.h
WRAP_GL2PS Customize support for tcl3dGl2ps gl2ps.h
WRAP_ODE Customize support for tcl3dOde ode/ode.h

Table 2.5: Customization settings

N o t e
Do not set a macro to 0, but comment the corresponding line (i.e. undefine), as shown in the
following example:
WRAP_FEATURE = 1 enables the feature
WRAP_FEATURE = 1 disables the feature

Each Makefile of an optional module additionally checks for the existence of an important
include file (as listed in column "Additional check file") to enable extension support for Tcl3D.

2.2.4 Step 4: Compilation and installation

The following commands should compile and install the Tcl3D package:

> gmake
> gmake install

The make process prints out lines about the success of wrapping optional modules:
Tcl3D built with Cg support
Tcl3D built without ODE support
...

Tcl3D User Manual Version 0.3.3, September 2008 Page 15 of 61
Copyright © 2005-2008 by Paul Obermeier. All rights reserved.

2 Installation Tcl3D: Doing 3D with Tcl

The starpack is not generated by default. If you installed the starpack distribution package, you
have to go into the directory starpack and call make there.

N o t e
To test the generated starpack, copy it into a temporary directory and start it from there., as the
starpack will copy all external libraries into the current directory.

First installation tests

Start a tclsh or wish shell and type package require tcl3d.
Use the procedures tcl3dShowPackageInfo for a graphical package information or
tcl3dGetPackageInfo for textual package information.
If these procedures fails, you may try the low level information supplied in the Tcl array
__tcl3dPkgInfo:

> parray __tcl3dPkgInfo
__tcl3dPkgInfo(tcl3dcg,avail) = 0
__tcl3dPkgInfo(tcl3dcg,version) = Cg library not wrapped
__tcl3dPkgInfo(tcl3ddemoutil,avail) = 1
__tcl3dPkgInfo(tcl3ddemoutil,version) = 0.3.3

Version Tcl3D-Basic should print out the following lines, when calling tcl3dGetPackageInfo:

{tcl3dcg 0 {Cg library not wrapped} {}}
{tcl3ddemoutil 1 0.3.3 {}}
{tcl3dftgl 0 {FTGL library not wrapped} {}}
{tcl3dgauges 1 0.3.3 {}}
{tcl3dgl2ps 0 {gl2ps library not wrapped} {}}
{tcl3dode 0 {ODE library not wrapped} {}}
{tcl3dogl 1 0.3.3 {}}
{tcl3dsdl 0 {SDL library not wrapped} {}}
{tcl3dtogl 1 0.3.3 {}}
{tcl3dutil 1 0.3.3 {}}

Version Tcl3D-Complete should print out the following lines, when calling tcl3dGetPackageInfo:

{tcl3dcg 1 0.3.3 1.5.0015}
{tcl3ddemoutil 1 0.3.3 {}}
{tcl3dftgl 1 0.3.3 2.1.2}
{tcl3dgauges 1 0.3.3 {}}
{tcl3dgl2ps 1 0.3.3 1.3.2}
{tcl3dode 1 0.3.3 0.7.0}
{tcl3dogl 1 0.3.3 {}}
{tcl3dsdl 1 0.3.3 1.2.9}
{tcl3dtogl 1 0.3.3 {}}
{tcl3dutil 1 0.3.3 {}}

2.3 Extending Tcl3D

TODO: This chapter will be filled in a future release.

2.3.1 General information

Each optional module wrapping a library (eg. SDL) has to have at least 2 files in folder tclfiles:
pkgIndex.tcl and tcl3dSDLQuery.tcl.

Tcl3D User Manual Version 0.3.3, September 2008 Page 16 of 61
Copyright © 2005-2008 by Paul Obermeier. All rights reserved.

2 Installation Tcl3D: Doing 3D with Tcl

The latter file contains procedures to query functionality related to the package. All procedures
contained in this file must be able to work, even if the corresponding dynamic library does not
exist or is just a dummy.
This file must be loaded in pkgIndex.tcl before the dynamic library. All other package related
Tcl files should be loaded after the dynamic library.

2.3.2 Extending with a Tcl utility

2.3.3 Extending with a C/C++ utility

2.3.4 Extending with a newer version of an external library

2.3.5 Extending with a new external library

Tcl3D User Manual Version 0.3.3, September 2008 Page 17 of 61
Copyright © 2005-2008 by Paul Obermeier. All rights reserved.

3 Wrapping in detail Tcl3D: Doing 3D with Tcl

3 Wrapping in detail

This chapter explains, how parameters and return values of the C and C++-based library
functions are mapped to Tcl command parameters and return values. The intention of the
wrapping mechanism was to be as close to the C interface and use Tcl standard types
wherever possible:

• C functions are mapped to Tcl commands.
• C constants are mapped to Tcl global variables.
• Some C enumerations are mapped to Tcl global variables and are inserted into a Tcl hash

table for lookup by name.

The mapping described in this chapter is consistently applied to all libraries wrapped with Tcl3D.
It is optimized to work best with the OpenGL interface.

3.1 Wrapping description

Conventions used in this chapter:

• Every type of parameter is explained with a typical example from the OpenGL wrapping.
• The notation TYPE stands for any scalar value (char, int, float, enum etc. as well as

inherited scalar types like GLboolean, GLint, GLfloat, etc.). It is not used for type void or
GLvoid.

• The notation STRUCT stands for any C struct.
• The decision how to map C to Tcl types was mainly inspired to fit the needs of the OpenGL

library best. The same conventions are used for the optional modules, too.
• Function parameters declared as const pointers are interpreted as input parameters.

Parameters declared as pointer are interpreted output parameters.

3.1.1 Scalar input parameters

The mapping of most scalar types is handled by SWIG standard typemaps.

Scalar types as function input parameter must be supplied as numerical value.

Input parameter TYPE
C declaration void glTranslatef (GLfloat x, GLfloat y, GLfloat z);
C example glTranslatef (1.0, 2.0, 3.0);

glTranslatef (x, y, z);
Tcl example glTranslatef 1.0 2.0 3.0

glTranslatef $x $y $z
Table 3.1: Wrapping of a scalar input parameter

The mapping of the following enumerations is handled differently (see file tcl3dConstHash.i).
They can be specified either as numerical value like the other scalar types, or additionally as a
name identical to the enumeration name.

• GLboolean
• GLenum
• GLbitfield
• CGenum
• CGGLenum
• CGprofile
• CGtype

Tcl3D User Manual Version 0.3.3, September 2008 Page 18 of 61
Copyright © 2005-2008 by Paul Obermeier. All rights reserved.

3 Wrapping in detail Tcl3D: Doing 3D with Tcl

• CGresource
• CGerror

The mapping is explained using the 3 OpenGL enumeration types. The Cg types are handled
accordingly.

GLenum as function input parameter can be supplied as numerical value or as name.

Input parameter GLenum
C declaration void glEnable (GLenum cap);
C example glEnable (GL_BLEND);
Tcl example glEnable GL_BLEND

glEnable $::GL_BLEND
Table 3.2: Wrapping of a GLenum input parameter

GLbitfield as function input parameter can be supplied as numerical value or as name.

N o t e
A combination of bit masks has to be specified as a numerical value like this:
glClear [expr $::GL_COLOR_BUFFER_BIT | $::GL_DEPTH_BUFFER_BIT]

Input parameter GLbitfield
C declaration void glClear (GLbitfield mask);
C example glClear (GL_COLOR_BUFFER_BIT);
Tcl example glClear GL_COLOR_BUFFER_BIT

glClear $::GL_COLOR_BUFFER_BIT
Table 3.3: Wrapping of a GLbitfield input parameter

GLboolean as function input parameter can be supplied as numerical value or as name.

Input parameter GLboolean
C declaration void glEdgeFlag (GLboolean flag);
C example glEdgeFlag (GL_TRUE);
Tcl example glEdgeFlag GL_TRUE

glEdgeFlag $::GL_TRUE
Table 3.4: Wrapping of a GLboolean input parameter

3.1.2 Pointer input parameters

The mapping of const TYPE pointers is handled in file tcl3dPointer.i.

Constant pointers as function input parameter must be supplied as a Tcl list.

Input parameter const TYPE[SIZE], const TYPE *
C declaration void glMaterialfv (GLenum face, GLenum pname,

 const GLfloat *params);
C example GLfloat mat_diffuse = { 0.7, 0.7, 0.7, 1.0 };

glMaterialfv (GL_FRONT, GL_DIFFUSE, mat_diffuse);
Tcl example set mat_diffuse { 0.7 0.7 0.7 1.0 }

glMaterialfv GL_FRONT GL_DIFFUSE $mat_diffuse
Table 3.5: Wrapping of a pointer input parameter

Tcl3D User Manual Version 0.3.3, September 2008 Page 19 of 61
Copyright © 2005-2008 by Paul Obermeier. All rights reserved.

3 Wrapping in detail Tcl3D: Doing 3D with Tcl

N o t e
• This type of parameter is typically used to specify small vectors (2D, 3D and 4D) as well as

control points for NURBS.
• Unlike in the C version, specifying data with the scalar version of a function (ex.
glVertex3f) is faster than the vector version (ex. glVertex3fv) in Tcl.

• Tcl lists given as parameters to a Tcl3D function have to be flat, i.e. they are not allowed to
contain sublists. When working with lists of lists, you have to flatten the list, before
supplying it as an input parameter to a Tcl3D function. One way to do this is shown in the
example below.

set ctrlpoints {
 {-4.0 -4.0 0.0} {-2.0 4.0 0.0}
 { 2.0 -4.0 0.0} { 4.0 4.0 0.0}

}
glMap1f GL_MAP1_VERTEX_3 0.0 1.0 3 4 [join $ctrlpoints]

The mapping of const void pointers is handled by SWIG standard typemaps.

Constant void pointers as function input parameter must be given as a pointer to a contiguous
piece of memory of appropriate size.

Input parameter const void[SIZE], const void *
C declaration void glVertexPointer (GLint size, GLenum type,

 GLsizei stride, const GLvoid *ptr);

C example

static GLint vertices[] =
 { 25, 25, 100, 325, 175, 25,
 175, 325, 250, 25, 325, 325};
glVertexPointer (2, GL_INT, 0, vertices);

Tcl example

set vertices [tcl3dVectorFromArgs GLint \
 25 25 100 325 175 25 \
 175 325 250 25 325 325]
glVertexPointer 2 GL_INT 0 $::vertices

Table 3.6: Wrapping of a void pointer input parameter

N o t e
• The allocation of usable memory can be accomplished with the use of the tcl3dVector

commands, which are described in chapter 4.2.5.
• This type of parameter is typically used to supply image data or vertex arrays. See also the

description of the image utility module in chapter 4.2.6.

3.1.3 Output parameters

The mapping of non-constant pointers is handled by the SWIG standard typemaps.

Non-constant pointers as function output parameter must be given as a pointer to a contiguous
piece of memory of appropriate size (tcl3dVector). See note above.

Tcl3D User Manual Version 0.3.3, September 2008 Page 20 of 61
Copyright © 2005-2008 by Paul Obermeier. All rights reserved.

3 Wrapping in detail Tcl3D: Doing 3D with Tcl

Output parameter TYPE[SIZE], void[SIZE], TYPE *, void *

C declaration

void glGetFloatv (GLenum pname, GLfloat *params);
void glReadPixels (GLint x, GLint y, GLsizei width,
 GLsizei height, GLenum format,
 GLenum type, GLvoid *pixels);

C example

GLfloat values[2];
glGetFloatv (GL_LINE_WIDTH_GRANULARITY, values);

GLubyte *vec = malloc (w * h * 3);
glReadPixels (0, 0, w, h, GL_RGB, GL_UNSIGNED_BYTE, vec);

Tcl example

set values [tcl3dVector GLfloat 2]
glGetFloatv GL_LINE_WIDTH_GRANULARITY $values

set vec [tcl3dVector GLubyte [expr $w * $h * 3]]
glReadPixels 0 0 $w $h GL_RGB GL_UNSIGNED_BYTE $vec

Table 3.7: Wrapping of a pointer output parameter

3.1.4 Function return values

The mapping of return values is handled by the SWIG standard typemaps.

Scalar return values are returned as the numerical value.
Pointer to structs are returned with the standard SWIG mechanism of encoding the pointer in an
ASCII string.

Function return TYPE, STRUCT *

C declaration
GLuint glGenLists (GLsizei range);
GLUnurbs* gluNewNurbsRenderer (void);

C example

GLuint sphereList = glGenLists(1);

GLUnurbsObj *theNurb = gluNewNurbsRenderer();
gluNurbsProperty (theNurb, GLU_SAMPLING_TOLERANCE, 25.0);

Tcl example

set sphereList [glGenLists 1]

set theNurb [gluNewNurbsRenderer]
gluNurbsProperty $theNurb GLU_SAMPLING_TOLERANCE 25.0

Table 3.8: Wrapping of a function return value

The next lines show an example of SWIG’s pointer encoding:

% set theNurb [gluNewNurbsRenderer]
% puts $theNurb
_10fa1500_p_GLUnurbs

The returned name can only be used in functions expecting a pointer to the appropriate struct.

3.1.5 Exceptions from the standard rules

The GLU library as specified in header file glu.h does not provide an API, that is using the
const specifier as consistent as the GL core library. So one class of function parameters
(TYPE*) is handled differently with GLU functions. Arguments of type TYPE* are used both as
input and output parameters in the C version. In GLU 1.2 most functions use this type as input
parameter. Only two functions use this type as an output parameter.

Tcl3D User Manual Version 0.3.3, September 2008 Page 21 of 61
Copyright © 2005-2008 by Paul Obermeier. All rights reserved.

3 Wrapping in detail Tcl3D: Doing 3D with Tcl

So for GLU functions there is the exception, that TYPE* is considered an input parameter and
therefore is wrapped as a Tcl list.

Input parameter TYPE * (GLU only)

C declaration

void gluNurbsCurve (GLUnurbs *nobj, GLint nknots,
 GLfloat *knot, GLint stride,
 GLfloat *ctlarray, GLint order,
 GLenum type);

C example

GLfloat curvePt[4][2] = {{0.25, 0.5}, {0.25, 0.75},
 {0.75, 0.75}, {0.75, 0.5}};
GLfloat curveKnots[8] = {0.0, 0.0, 0.0, 0.0,
 1.0, 1.0, 1.0, 1.0};
gluNurbsCurve (theNurb, 8, curveKnots, 2,
 &curvePt[0][0], 4, GLU_MAP1_TRIM_2);

Tcl example

set curvePt {0.25 0.5 0.25 0.75 0.75 0.75 0.75 0.5}
set curveKnots {0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0}
gluNurbsCurve $theNurb 8 $curveKnots 2 $curvePt 4
 GLU_MAP1_TRIM_2

Table 3.9: Wrapping of GLU functions

The two aforementioned functions, which provide output parameters with TYPE* are
gluProject and gluUnProject. These are handled as a special case in the SWIG interface file
glu.i. The 3 output parameters are given the keyword OUTPUT, so SWIG handles them in a
special way: SWIG builds a list consisting of the normal function return value, and all
parameters marked with that keyword. This list will be the return value of the corresponding Tcl
command.

Definition in glu.h Redefinition in SWIG interface file glu.i
extern GLint gluUnProject (
GLdouble winX, GLdouble winY,
GLdouble winZ,
const GLdouble *model,
const GLdouble *proj,
const GLint *view,
GLdouble* objX,
GLdouble* objY,
GLdouble* objZ);

GLint gluUnProject (
GLdouble winX, GLdouble winY,
GLdouble winZ,
const GLdouble *model,
const GLdouble *proj,
const GLint *view,
GLdouble* OUTPUT,
GLdouble* OUTPUT,
GLdouble* OUTPUT);

Table 3.10: Wrapping exceptions for GLU

Example usage (see Redbook example unproject.tcl for complete code):

glGetIntegerv GL_VIEWPORT $viewport
glGetDoublev GL_MODELVIEW_MATRIX $mvmatrix
glGetDoublev GL_PROJECTION_MATRIX $projmatrix
set viewList [tcl3dVectorToList $viewport 4]
set mvList [tcl3dVectorToList $mvmatrix 16]
set projList [tcl3dVectorToList $projmatrix 16]

set realy [expr [$viewport get 3] - $y - 1]
set winList [gluUnProject $x $realy 0.0 $mvList $projList $viewList]
puts "gluUnProject return value: [lindex $winList 0]"
puts [format "World coords at z=0.0 are (%f, %f, %f)" \
 [lindex $winList 1] [lindex $winList 2] [lindex $winList 3]]

N o t e The above listed exceptions are only valid for the GLU library. The optional modules
have not been analysed in-depth regarding the constness of parameters.

Tcl3D User Manual Version 0.3.3, September 2008 Page 22 of 61
Copyright © 2005-2008 by Paul Obermeier. All rights reserved.

3 Wrapping in detail Tcl3D: Doing 3D with Tcl

3.2 Wrapping reference card

• The notation TYPE stands for any scalar value (char, int, float, etc. as well as inherited
scalar types like GLboolean, GLint, GLfloat, etc.). It is not used for type void or
GLvoid.

• The notation STRUCT stands for any C struct.

C parameter type Tcl parameter type
Input parameter
TYPE Numerical value.
GLboolean Numerical value or name of constant.
GLenum Numerical value or name of constant.
GLbitfield Numerical value or name of constant.
CGenum Numerical value or name of constant.
CGGLenum Numerical value or name of constant.
CGprofile Numerical value or name of constant.
CGtype Numerical value or name of constant.
CGresource Numerical value or name of constant.
CGerror Numerical value or name of constant.
const TYPE[SIZE] Tcl list.
const TYPE * Tcl list.
const void * tcl3dVector
Output parameter
TYPE * tcl3dVector
void * tcl3dVector
Return value
TYPE Numerical value.
STRUCT * SWIG encoded pointer to struct.

Table 3.11: Tcl3D wrapping reference

Tcl3D User Manual Version 0.3.3, September 2008 Page 23 of 61
Copyright © 2005-2008 by Paul Obermeier. All rights reserved.

4 Modules in detail Tcl3D: Doing 3D with Tcl

4 Modules in detail

This chapter explains in detail the different modules, Tcl3D is currently built upon:
• tcl3dTogl : Enhanced Togl widget
• tcl3dUtil : Tcl3D utility library
• tcl3dOgl : Wrapper for basic OpenGL functionality
• tcl3dOglExt : Wrapper for enhanced OpenGL functionality
• tcl3dCg : Wrapper for NVidia’s Cg shading language
• tcl3dSDL : Wrapper for the Simple DirectMedia Library
• tcl3dFTGL : Wrapper for the OpenGL Font Rendering Library
• tcl3dGl2ps : Wrapper for the OpenGL To Postscript Library
• tcl3dOde : Wrapper for the Open Dynamics Engine
• tcl3dGauges : Tcl3D package for displaying gauges
• tcl3dDemoUtil : C/C++ based utilities for demo applications

4.1 tcl3dTogl: Enhanced Togl widget

Togl [6] is a Tk widget with support to display OpenGL graphics. The original version only
supported issuing drawing commands in C. To be usable from the Tcl level, it has been
extended with configuration options for specifying Tcl callback commands: tcl3dTogl.

Requirements for this module: None, all files are contained in the Tcl3D distribution.

4.1.1 Togl commands

The following is a list of currently available Togl commands. The commands changed or new in
Tcl3D are marked bold and explained in detail below. For a description of the other commands
see the original Togl documentation.

configure
render
swapbuffers
makecurrent
postredisplay
loadbitmapfont
unloadbitmapfont

Bitmap fonts

Specifying bitmap fonts can be accomplished with the loadbitmapfont command.
The font can either be specified in XLFD format or Tk-like with the following options:

–family courier|times|...
-weight medium|bold
-slant regular|italic
–size PixelSize

Examples:

$toglwin loadbitmapfont -*-courier-bold-r-*-*-10-*-*-*-*-*-*-*
$toglwin loadbitmapfont -family fixed -size 12 -weight medium -slant regular

See the tcl3dToglFonts.tcl and tcl3dFont.tcl demos for more examples, on how to use fonts
with Togl.

Tcl3D User Manual Version 0.3.3, September 2008 Page 24 of 61
Copyright © 2005-2008 by Paul Obermeier. All rights reserved.

4 Modules in detail Tcl3D: Doing 3D with Tcl

4.1.2 Togl options

The following is a list of currently available Togl options. The options changed or new in Tcl3D
are marked bold and explained in detail below. For a description of the other options see the
original Togl documentation.

-height -width -setgrid
-rgba -redsize -greensize -bluesize
-double -depth -depthsize -accum
-accumredsize -accumgreensize -accumbluesize -accumalphasize
-alpha -alphasize -stencil -stencilsize
-auxbuffers -privatecmap -overlay -stereo
-cursor -time -sharelist -sharecontext
-ident -indirect -pixelformat
-swapinterval -multisamplebuffers -multisamplesamples
-createproc -displayproc -reshapeproc

These configuration options behave like standard Tcl options and can be queried as such:

% package require tcl3d ; # or just package require tcl3dtogl
0.3.3
% togl .t
% .t configure
{-height height Height 400 400} …
{-displayproc displayproc Displayproc {} {}} …
% .t configure -displayproc tclDisplayFunc
% .t configure -displayproc
-displayproc displayproc Displayproc {} tclDisplayFunc

Callback procedures

To be usable from the Tcl level, the Togl widget has been extended to support 3 new
configuration options for specifying Tcl callback procedures:

-createproc ProcName Procedure is called when a new widget is created.
-reshapeproc ProcName Procedure is called when the widget's size is changed.
-displayproc ProcName Procedure is called when the widget's content needs to be redrawn.

Default settings are:

{-createproc createproc Createproc {} {}}
{-displayproc displayproc Displayproc {} {}}
{-reshapeproc reshapeproc Reshapeproc {} {}}

The callback procedures must have the following signatures:

proc CreateProc { toglwin } { ... }
proc ReshapeProc { toglwin width height } { ... }
proc DisplayProc { toglwin } { ... }

Display options

-swapinterval Enable/disable synchronization to vertical blank signal
-multisamplebuffers Enable/disable the multisample buffer
-multisamplesamples Set the number of multisamples

Tcl3D User Manual Version 0.3.3, September 2008 Page 25 of 61
Copyright © 2005-2008 by Paul Obermeier. All rights reserved.

4 Modules in detail Tcl3D: Doing 3D with Tcl

Default settings are:

{-swapinterval swapInterval SwapInterval 1 1}
{-multisamplebuffers multisampleBuffers MultisampleBuffers 0 0}
{-multisamplesamples multisampleSamples MultisampleSamples 2 2}

N o t e
Multisampling was implemented for the Togl widget in Tcl3D version 0.3.2. If working with older
version of Tcl3D, you may enable multisampling outside of Tcl3D as follows:
With NVidia cards, you can enable multisampling under Windows via the NVidia driver GUI.
Under Linux you can set the environment variable __GL_FSAA_MODE to 1.

4.1.3 A simple Tcl3D template

A template for a Tcl3D application looks like follows:

package require tcl3d

proc tclCreateFunc { toglwin } {
 glShadeModel GL_SMOOTH ; # Enable smooth shading
 glClearColor 0.0 0.0 0.0 0.5 ; # Black background
 glClearDepth 1.0 ; # Depth buffer setup
 glEnable GL_DEPTH_TEST ; # Enable depth testing
}

proc tclReshapeFunc { toglwin w h } {
 glViewport 0 0 $w $h ; # Reset the current viewport
 glMatrixMode GL_PROJECTION ; # Select the projection matrix
 glLoadIdentity ; # Reset the projection matrix

 # Calculate the aspect ratio of the window
 gluPerspective 45.0 [expr double($w)/double($h)] 0.1 100.0

 glMatrixMode GL_MODELVIEW ; # Select the modelview matrix
 glLoadIdentity ; # Reset the modelview matrix
}

proc tclDisplayFunc { toglwin } {
 # Clear color and depth buffer
 glClear [expr $::GL_COLOR_BUFFER_BIT | $::GL_DEPTH_BUFFER_BIT]

 glLoadIdentity ; # Reset the current modelview matrix

 glTranslatef 0.0 0.0 -5.0 ; # Transformations
 glRotatef $::xrot 1.0 0.0 0.0
 glRotatef $::yrot 0.0 1.0 0.0
 glRotatef $::zrot 0.0 0.0 1.0

 drawGeometry ; # Draw the actual geometry

 $toglwin swapbuffers ; # Swap front and back buffer
}

frame .fr
pack .fr -expand 1 -fill both
Create a Togl widget with a depth buffer and doublebuffering enabled.
togl .fr.toglwin -width 250 -height 250 \
 -double true -depth true \
 -createproc tclCreateFunc \
 -reshapeproc tclReshapeFunc \
 -displayproc tclDisplayFunc
grid .fr.toglwin -row 0 -column 0 -sticky news

N o t e

Tcl3D User Manual Version 0.3.3, September 2008 Page 26 of 61
Copyright © 2005-2008 by Paul Obermeier. All rights reserved.

4 Modules in detail Tcl3D: Doing 3D with Tcl

Option –createproc is not effective, when specified in the configure subcommand. It has to
be specified at widget creation time.

4.2 tcl3dUtil: Tcl3D utility library

This module implements several utilities in C and Tcl offering functionality needed for 3D
programs. It currently contains the following submodules:

• 3D vector and transformation matrix module
• Information module
• File utility module
• Color names module
• Large data module (tcl3dVector)
• Image utility module
• Screen capture module
• Timing module
• Random number module
• 3D-model and shapes module
• Virtual trackball and arcball module

Requirements for this module: None, all files are contained in the Tcl3D distribution.

The master SWIG file for wrapping the utility library is tcl3dUtil.i.

4.2.1 3D vector and transformation matrix module

This module provides miscellaneous 3D vector and 4x4 transformation matrix functions.

Overview

The following tables list the available functions of this module. For a detailled description of the
functions see the Tcl3D Reference Manual [5] or the source code files as listed in section
Implementation details at the end of this chapter.

Tcl command Description
tcl3dVec3fPrint Print the contents of a 3D vector onto standard output.
tcl3dVec3fIdentity Fill a 3D vector with (0.0, 0.0, 0.0).
tcl3dVec3fCopy Copy a 3D vector.
tcl3dVec3fLength Calculate the length of a 3D vector.
tcl3dVec3fNormalize Normalize a 3D vector.
tcl3dVec3fDistance Calculate the distance between two 3D vectors.
tcl3dVec3fDotProduct Calculate the dot product of two 3D vectors.
tcl3dVec3fCrossProduct Calculate the cross product of two 3D vectors.
tcl3dVec3fAdd Add two 3D vectors.
tcl3dVec3fSubtract Subtract two 3D vectors.
tcl3dVec3fScale Scale a 3D vector by a scalar value.
tcl3dVec3fPlaneNormal Create a plane normal defined by three points.

Table 4.1: tcl3dUtil: 3D vector commands

Tcl3D User Manual Version 0.3.3, September 2008 Page 27 of 61
Copyright © 2005-2008 by Paul Obermeier. All rights reserved.

4 Modules in detail Tcl3D: Doing 3D with Tcl

Tcl command Description
tcl3dMatfPrint Print the contents of a matrix onto standard output.
tcl3dMatfIdentity Build the identity transformation matrix.
tcl3dMatfCopy Copy a transformation matrix.
tcl3dMatfTranslatev Build a translation matrix based on a 3D vector.
tcl3dMatfTranslate Build a translation matrix based on 3 scalar values.
tcl3dMatfRotate Build a rotation matrix based on angle (°) and axis.
tcl3dMatfRotateX Build a rotation matrix based on angle (°) around x axis.
tcl3dMatfRotateY Build a rotation matrix based on angle (°) around y axis.
tcl3dMatfRotateZ Build a rotation matrix based on angle (°) around z axis.
tcl3dMatfScalev Build a scale matrix based on a 3D vector.
tcl3dMatfScale Build a scale matrix based on 3 scalar values.
tcl3dMatfTransformPoint Transform a point by a given matrix.
tcl3dMatfTransformVector Transform a 3D vector by a given matrix.
tcl3dMatfMult Multiply two transformation matrices.
tcl3dMatfInvert Invert a transformation matrix.
tcl3dMatfTranspose Transpose a transformation matrix.

Table 4.2: tcl3dUtil: Matrix commands

Examples

See the test programs matmathtest.tcl and vecmathtest.tcl for examples, on how to use
these procedures. Also take a look at the demo program ogl_fps_controls.tcl for a real-world
example.

Implementation details

The functionality of this module is implemented in the following files:

Implementation files: tcl3dVecMath.c, tcl3dVecMath.tcl
Header files: tcl3dVecMath.h
Wrapper files: util.i

4.2.2 Information module

This module provides convenience functions for querying Tcl3D package related information.

Overview

The following table lists the available functions of this module. For a detailled description of the
functions see the Tcl3D Reference Manual [5] or the source code files as listed in section
Implementation details at the end of this chapter.

Tcl3D User Manual Version 0.3.3, September 2008 Page 28 of 61
Copyright © 2005-2008 by Paul Obermeier. All rights reserved.

4 Modules in detail Tcl3D: Doing 3D with Tcl

Tcl command Description
tcl3dHavePackage Check, if a Tcl package is available in a given version.
tcl3dGetLibraryInfo Return the library version corresponding to supplied Tcl3D

package name.
tcl3dGetPackageInfo Return a list of sub-lists containing Tcl3D package information.

Each sub-list contains the name of the Tcl3D sub-package, the
availability flag (0 or 1), the sub-package version as well as the
version of the wrapped library.

tcl3dShowPackageInfo Display the version info returned by tcl3dGetPackageInfo in
a toplevel window.

tcl3dHaveCg Check, if the Cg library has been loaded successfully.
tcl3dHaveSDL Check, if the SDL library has been loaded successfully.
tcl3dHaveFTGL Check, if the FTGL library has been loaded successfully.
tcl3dHaveGl2ps Check, if the GL2PS library has been loaded successfully.
tcl3dHaveOde Check, if the ODE library has been loaded successfully.

Table 4.3: tcl3dUtil: Information commands

Examples

The following code snippet shows how to call tcl3dGetPackageInfo.

foreach pkgInfo [tcl3dGetPackageInfo] {
 puts "[lindex $pkgInfo 0]: [lindex $pkgInfo 1]"
}

{tcl3dcg 1 0.3.3 1.5.0015}
{tcl3ddemoutil 1 0.3.3 {}}
{tcl3dftgl 1 0.3.3 2.1.2}
{tcl3dgauges 1 0.3.3 {}}
{tcl3dgl2ps 1 0.3.3 1.3.2}
{tcl3dode 1 0.3.3 0.7.0}
{tcl3dogl 1 0.3.3 {}}
{tcl3dsdl 1 0.3.3 1.2.9}
{tcl3dtogl 1 0.3.3 {}}
{tcl3dutil 1 0.3.3 {}}

Implementation details

The functionality of this module is implemented in the following files:

Implementation files: tcl3dInfo.tcl
Header files: None
Wrapper files: None

4.2.3 File utility module

This module provides miscellaneous functions for file related tasks: Handling of temporary
directories and file access from a Starpack.

Overview

The following table lists the available functions of this module. For a detailled description of the
functions see the Tcl3D Reference Manual [5] or the source code files as listed in section
Implementation details at the end of this chapter.

Tcl3D User Manual Version 0.3.3, September 2008 Page 29 of 61
Copyright © 2005-2008 by Paul Obermeier. All rights reserved.

4 Modules in detail Tcl3D: Doing 3D with Tcl

Tcl command Description
tcl3dGetTmpDir Get the name of a temporary directory.
tcl3dCreateTmpDir Create a unique temporary directory.
tcl3dGenExtName Create a name on the file system. Use this function, if writing to

a file from a script, which may be running from within a Starpack.
tcl3dGetExtFile Get a name on the file system. Use this function, if a file is

needed for reading from an external Tcl3D library, like font files
used by FTGL, or shader files, and the script may be executed
from within a Starpack.

Table 4.4: tcl3dUtil: File utility commands

Examples

See the demo program Lesson02.tcl for an example usage of tcl3dGenExtName, and demo
ftglTest.tcl for an example usage of tcl3dGetExtFile .

Implementation details

The functionality of this module is implemented in the following files:

Implementation files: tcl3dFile.tcl
Header files: None
Wrapper files: None

4.2.4 Color names module

This module provides miscellaneous functions for handling color specifications in Tcl and
OpenGL style.

Overview

The following table lists the available functions of this module. For a detailled description of the
functions see the Tcl3D Reference Manual [5] or the source code files as listed in section
Implementation details at the end of this chapter.

Tcl3D User Manual Version 0.3.3, September 2008 Page 30 of 61
Copyright © 2005-2008 by Paul Obermeier. All rights reserved.

4 Modules in detail Tcl3D: Doing 3D with Tcl

Tcl command Description
tcl3dGetColorNames Return a list of all supported Tcl color names.
tcl3dFindColorName Check, if supplied color name is a valid Tcl color name.
tcl3dName2Hex Convert a Tcl color name into the corresponding hexadecimal

representation: #RRGGBB
tcl3dName2Hexa Convert a Tcl color name into the corresponding hexadecimal

representation: #RRGGBBAA
tcl3dName2rgb Convert a Tcl color specification into the corresponding OpenGL

representation. OpenGL colors are returned as a list of 3 unsigned
bytes: r g b

tcl3dName2rgbf Convert a color specification into the corresponding OpenGL
representation. OpenGL colors are returned as a list of 3 floats in
the range [0..1]: r g b

tcl3dName2rgba Convert a color specification into the corresponding OpenGL
representation. OpenGL colors are returned as a list of 4 unsigned
bytes: r g b a

tcl3dName2rgbaf Convert a color specification into the corresponding OpenGL
representation. OpenGL colors are returned as a list of 4 floats in
the range [0..1]: r g b a

tcl3dRgb2Name Convert an OpenGL RGB color representation into a hexadecimal
Tcl color name string. OpenGL colors are specified as unsigned
bytes in the range [0..255].

tcl3dRgba2Name Convert an OpenGL RGBA color representation into a hexadecimal
Tcl color name string. OpenGL colors are specified as unsigned
bytes in the range [0..255].

tcl3dRgbf2Name Convert an OpenGL RGB color representation into a hexadecimal
Tcl color name string. OpenGL colors are specified as floats in the
range [0..1].

tcl3dRgbaf2Name Convert an OpenGL RGBA color representation into a hexadecimal
Tcl color name string. OpenGL colors are specified as floats in the
range [0..1].

Table 4.5: tcl3dUtil: Color utility commands

Examples

See the test program colorNames.tcl for examples, on how to use these procedures.

[tcl3dName2Hex white] returns "#FFFFFF"
[tcl3dName2Hexa white] returns "#FFFFFFFF"

[tcl3dName2rgb white] returns {255 255 255}
[tcl3dRgb2Name 255 255 255] returns "#FFFFFF"

[tcl3dName2rgba white] returns {255 255 255 255}
[tcl3dRgba2Name 255 255 255 255] returns "#FFFFFFFF"

[tcl3dName2rgbf white] returns {1.0 1.0 1.0}
[tcl3dRgbfName 1.0 1.0 1.0] returns "#FFFFFF"

[tcl3dName2rgbaf white] returns {1.0 1.0 1.0 1.0}
[tcl3dRgbafName 1.0 1.0 1.0 1.0] returns "#FFFFFFFF"

[tcl3dName2rgb "#0a0c0e"] returns {10 12 14}

Implementation details

The functionality of this module is implemented in the following files:

Tcl3D User Manual Version 0.3.3, September 2008 Page 31 of 61
Copyright © 2005-2008 by Paul Obermeier. All rights reserved.

4 Modules in detail Tcl3D: Doing 3D with Tcl

Implementation files: tcl3dColors.tcl
Header files: None
Wrapper files: None

4.2.5 Large data module

This module provides miscellaneous functions for handling large data like images used for
textures and vertex arrays.

Overview

The following table lists the available functions of this module. For a detailled description of the
functions see the Tcl3D Reference Manual [5] or the source code files as listed in section
Implementation details at the end of this chapter.

Tcl command Description
tcl3dVector Create a new Tcl3D Vector by calling the memory allocation

routine new_TYPE and create a new Tcl procedure. (See
example below).

tcl3dVectorInd Get index of a Tcl3D Vector.
tcl3dVectorPrint Print the contents of a Tcl3D Vector onto standard output.

tcl3dVectorFromArgs Create a new Tcl3D Vector from variable argument list.
tcl3dVectorFromList Create a new Tcl3D Vector from Tcl list.
tcl3dVectorFromString Create a new Tcl3D Vector from Tcl string. Very slow.
tcl3dVectorFromByteArray Create a new Tcl3D Vector from Tcl binary string.
tcl3dVectorFromPhoto Create a new Tcl3D Vector containing the data of a Tk photo

image. See next chapter for detailled description.

tcl3dVectorToList Copy the contents of a Tcl3D Vector into a Tcl list.
tcl3dVectorToString Copy the contents of a Tcl3D Vector into a string. Very slow.
tcl3dVectorToByteArray Copy the contents of a Tcl3D Vector into a Tcl binary string.

Table 4.6: tcl3dUtil: tcl3dVector utility commands

N o t e
• The tcl3dFromString and tcl3dVectorToString commands can be replaced with

the corresponding ByteArray commands, which are much faster.
• For functions converting photos into vectors and vice versa, see the next chapter about

image manipulation.

The tcl3dVector command creates a new Tcl procedure with the following subcommands,
which wrap the low-level vector access functions described above:

Tcl3D User Manual Version 0.3.3, September 2008 Page 32 of 61
Copyright © 2005-2008 by Paul Obermeier. All rights reserved.

4 Modules in detail Tcl3D: Doing 3D with Tcl

Subcommand Description
get Get vector element at a given index. (TYPE_getitem)
set Set vector element at a given index to supplied value. (TYPE_setitem)
setvec Set range of vector elements to supplied value. (TYPE_setarray)
addvec Add supplied value to a range of vector elements. (TYPE_addarray)
mulvec Muliply supplied value to a range of vector elements.

(TYPE_mularray)
delete Delete a tcl3dVector. (delete_TYPE)

Table 4.7: tcl3dUtil: tcl3dVector subcommands

Examples

The following example shows the usage of the tcl3dVector command.

set ind 23
set vec [tcl3dVector GLfloat 123] ; # Create Vector of size 123 GLfloats
$vec set $ind 1017.0 ; # Set element at index 23 to 1017.0
set x [$vec get $ind] ; # Get element at index 23
$vec addvec 33 2 10 ; # Add 33 to ten elements starting at index 2
$vec delete ; # Free the allocated memory

N o t e Indices start at zero.

See the demo program bytearray.tcl and vecmanip.tcl for examples, on how to use the
ByteArray procedures for generating textures in Tcl.

Implementation details

The functionality of this module is implemented in the following files:

Implementation files: tcl3dVector.tcl
Header files: None
Wrapper files: tcl3dVectors.i, bytearray.i

As stated in chapter 3.1.2, some of the OpenGL functions need a pointer to a contiguous block
of allocated memory. SWIG already provides a feature to automatically generate wrapper
functions for allocating and freeing memory of any type. This SWIG feature
%array_functions has been extended and replaced with 2 new SWIG commands:
%baseTypeVector for scalar types and %complexTypeVector for complex types like
structs. It not only creates setter and getter functions for accessing single elements of the
allocated memory, but also adds functions to set ranges of the memory.

There are wrapper functions for these scalar types defined in file tcl3dVectors.i:

Array of is mapped to
short short
int int
ushort unsigned short
uint unsigned int
float float
double double
GLenum unsigned int
GLboolean unsigned char
GLbitfield unsigned int
GLbyte signed char

Tcl3D User Manual Version 0.3.3, September 2008 Page 33 of 61
Copyright © 2005-2008 by Paul Obermeier. All rights reserved.

4 Modules in detail Tcl3D: Doing 3D with Tcl

GLshort short
GLint int
GLsizei int
GLubyte unsigned char
GLushort unsigned short
GLuint unsigned int
GLfloat float
GLclampf float
GLdouble double
GLclampd double

N o t e
tcl3dVectors of type char, unsigned char, GLchar and GLcharARB are not supported,
because the corresponding typemaps would collide with the standard SWIG mapping for C
strings.
Use types GLbyte and GLubyte, if you need tcl3dVectors with element sizes of 1 byte.

The generated wrapper code looks like this (Example shown for GLdouble):

static double *new_GLdouble(int nelements) {
 return (double *) calloc(nelements,sizeof(double));
}

static void delete_GLdouble(double *ary) {
 free(ary);
}

static double GLdouble_getitem(double *ary, int index) {
 return ary[index];
}

static void GLdouble_setitem(double *ary, int index, double value) {
 ary[index] = value;
}

static void GLdouble_setvector(double *ary, double value,
 int startIndex, int len) {
 int i;
 int endIndex = startIndex + len;
 for (i=startIndex; i<endIndex; i++) {
 ary[i] = value;
 }
}

static void GLdouble_addvector(double *ary, double value,
 int startIndex, int len) {
 int i;
 int endIndex = startIndex + len;
 for (i=startIndex; i<endIndex; i++) {
 ary[i] += (double) value;
 }
}

static void GLdouble_mulvector(double *ary, double value,
 int startIndex, int len) {
 int i;
 int endIndex = startIndex + len;
 for (i=startIndex; i<endIndex; i++) {
 ary[i] *= (double) value;
 }
}

static double *GLdouble_ind(double *ary, int incr) {
 return (ary + incr);
}

Tcl3D User Manual Version 0.3.3, September 2008 Page 34 of 61
Copyright © 2005-2008 by Paul Obermeier. All rights reserved.

4 Modules in detail Tcl3D: Doing 3D with Tcl

static double *GLdouble_convert(void *ary) {
 return (double *)ary;
}

These low level functions are typically not used directly. They are accessible via the Tcl
command tcl3dVector, with the exception of the TYPE_ind functions.
An example for the usage of GLfloat_ind for optimized access to vectors can be found in
NeHe demo Lesson37.tcl.

File bytearray.i provides the implementation and wrapper definitions to convert Tcl binary
strings (ByteArrays) into Tcl3D Vectors (tcl3dByteArray2Vector) and vice versa
(tcl3dVector2ByteArray).

Comparison of the different vector methods

There are 4 different methods of setting vectors.

Method 1: $vec set $index $val
Set the elements with the tcl3dVector object method "set". Most elegant way, but also the
slowest. Only useful for small vectors.

Method 2: ${type}_setitem $vec $index $val
Set the elements with the tcl3dVector low-level function "setitem". Not so elegant, because you
need to know the type of the vector, but much faster than method 1.

Method 3: tcl3dListToVector_$type $list $vec $len
Set the elements with the low level functions "tcl3dListToVector_TYPE" introduced in Tcl3D
0.3.3. Not so elegant, because you need to know the type of the tcl3dVector and you have to
build a Tcl list before setting the tcl3dVector. This is the fastest way.

Method 4: set vec [tcl3dVectorFromList $type $list]
Set the elements with the utility function "tcl3dVectorFromList", which internally calls the low
level functions "tcl3dListToVector_TYPE". You don't have to care about allocating a tcl3dVector
of approriate size. This should be only slightly slower than method3.

The test program vectorspeed.tcl for the above mentioned four different methods shows
output similar to the following lines:

D:\poSoft\tcl3d\tcl3dOgl\tests> tclsh84 vectorspeed.tcl
Number of runs : 100
Size of vectors: 1000
Setting 100000 elements per method.
SetMethod1: 25339.3 microseconds per iteration
SetMethod2: 3637.8 microseconds per iteration
SetMethod3: 659.25 microseconds per iteration
SetMethod4: 736.24 microseconds per iteration

4.2.6 Image utility module

This module provides access to photo images as supplied by Tk.

Overview

Tcl3D User Manual Version 0.3.3, September 2008 Page 35 of 61
Copyright © 2005-2008 by Paul Obermeier. All rights reserved.

4 Modules in detail Tcl3D: Doing 3D with Tcl

The following table lists the available functions of this module. For a detailled description of the
functions see the Tcl3D Reference Manual [5] or the source code files as listed in section
Implementation details at the end of this chapter.

Tcl command Description
tcl3dPhotoChans Return the number of channels of a Tk photo.
tcl3dVectorToPhoto Copy from OpenGL raw image format into a Tk photo. The photo

image must have been initialized with the appropriate size and
type.

tcl3dPhotoToVector Copy a Tk photo into a tcl3dVector in OpenGL raw image
format. The tcl3dVector must have been allocated with the
approriate size and type.

tcl3dVectorFromPhoto Create a new Tcl3D Vector containing the image data of a Tk
photo image. Only GL_UNSIGNED_BYTE currently supported.

Table 4.8: tcl3dUtil: Image utility commands

N o t e The Img extension is recommended to have access to lots of image formats.

Examples

Example 1: Read an image into a Tk photo and use it as a texture map.

set texture [tcl3dVector GLuint 1] ; # Memory for 1 texture identifier

proc LoadImage { imgName } {
 set retVal [catch {set phImg [image create photo -file $imgName]} err1]
 if { $retVal != 0 } {
 error "Error reading image $imgName ($err1)"
 } else {
 set numChans [tcl3dPhotoChans $phImg]
 if { $numChans != 3 && $numChans != 4 } {
 error "Error: Only 3 or 4 channels allowed ($numChans supplied)"
 }
 set w [image width $phImg]
 set h [image height $phImg]
 set texImg [tcl3dVectorFromPhoto $phImg $numChans]
 image delete $phImg
 }
 return [list $texImg $w $h]
}

proc CreateTexture {} {
 # Load an image into a tcl3dVector.
 set imgInfo [LoadImage "Wall.bmp"]
 set imgData [lindex $imgInfo 0]
 set imgWidth [lindex $imgInfo 1]
 set imgHeight [lindex $imgInfo 2]

 # Create the texture identifiers.
 glGenTextures 1 $::texture

 glBindTexture GL_TEXTURE_2D [$::texture get 0]
 glTexParameteri GL_TEXTURE_2D GL_TEXTURE_MIN_FILTER $::GL_LINEAR
 glTexParameteri GL_TEXTURE_2D GL_TEXTURE_MAG_FILTER $::GL_LINEAR
 glTexImage2D GL_TEXTURE_2D 0 3 $imgWidth $imgHeight \
 0 GL_RGBA GL_UNSIGNED_BYTE $imgData

 # Delete the image data vector.
 $imgData delete
}

Example 2: Read an image from the OpenGL framebuffer and save it with the Img library.

Tcl3D User Manual Version 0.3.3, September 2008 Page 36 of 61
Copyright © 2005-2008 by Paul Obermeier. All rights reserved.

4 Modules in detail Tcl3D: Doing 3D with Tcl

proc SaveImg { imgName } {
 set w $::toglWidth
 set h $::toglHeight
 set numChans 4
 set vec [tcl3dVector GLubyte [expr $w * $h * $numChans]]
 glReadPixels 0 0 $w $h GL_RGBA GL_UNSIGNED_BYTE $vec
 set ph [image create photo -width $w -height $h]
 tcl3dVectorToPhoto $vec $ph $w $h $numChans
 set fmt [string range [file extension $imgName] 1 end]
 $ph write $imgName -format $fmt
 image delete $phImg
 $vec delete
}

proc tclReshapeFunc { toglwin w h } {
 set ::toglWidth $w
 set ::toglHeight $h
 ...
}

The actual size of the Togl window (::toglWidth, ::toglHeight), which is needed in
command SaveImg, can be saved in a global variable when the reshape callback is executed.

See the NeHe demo program Lesson41.tcl or any demo using textures for examples, on how
to use photo utilities.

Implementation details

The functionality of this module is implemented in the following files:

Implementation files: tcl3dVector.tcl
Header files: None
Wrapper files: tkphoto.i

4.2.7 Screen capture module

This module implements functions for capturing window contents into a photo image, an image
file or the clipboard.

Overview

The following table lists the available functions of this module. For a detailled description of the
functions see the Tcl3D Reference Manual [5] or the source code files as listed in section
Implementation details at the end of this chapter.

Tcl3D User Manual Version 0.3.3, September 2008 Page 37 of 61
Copyright © 2005-2008 by Paul Obermeier. All rights reserved.

4 Modules in detail Tcl3D: Doing 3D with Tcl

Tcl command Description
tcl3dWidget2Img Copy contents of a widget and all of its sub-widgets into a photo

image.
tcl3dWidget2File Copy contents of a widget and all of its sub-widgets into a photo

image and save the image to a file.
tcl3dCanvas2Img Copy the contents of a Tk canvas into a photo image.
tcl3dCanvas2File Copy the contents of a Tk canvas into a photo image and save

the image to a file.
tcl3dClipboard2Img Copy the contents of the Windows clipboard into a photo image.
tcl3dClipboard2File Copy the contents of the Windows clipboard into a photo image

and save the image to a file.
tcl3dImg2Clipboard Copy a photo into the Windows clipboard.
tcl3dWindow2Clipboard Copy the contents of the top level window (Alt-PrtSc) into the

Windows clipboard.
tcl3dDesktop2Clipboard Copy the contents of the whole desktop (PrtSc) into the Windows

clipboard.
tcl3dWindow2Img Copy the contents of the top level window (Alt-PrtSc) into a photo

image.
tcl3dWindow2File Copy the contents of the top level window (Alt-PrtSc) into a photo

image and save the image to a file.

Table 4.9: tcl3dUtil: Capture commands

N o t e
All of the functionality requires the help of the Img extension.
Some of the functionality requires the help of the Twapi extension and is therefore available
only on Windows.

Examples

See the demo program presentation.tcl for an example, on how to use these procedures to
save screenshots of the available Tcl3D demos by right-clicking on the demo name.

Implementation details

The functionality of this module is implemented in the following files:

Implementation files: tcl3dCapture.tcl
Header files: None
Wrapper files: None

4.2.8 Timing module

This module provides functions for timing purposes.

Overview

The following table lists the available functions of this module. For a detailled description of the
functions see the Tcl3D Reference Manual [5] or the source code files as listed in section
Implementation details at the end of this chapter.

Tcl3D User Manual Version 0.3.3, September 2008 Page 38 of 61
Copyright © 2005-2008 by Paul Obermeier. All rights reserved.

4 Modules in detail Tcl3D: Doing 3D with Tcl

Tcl command Description
tcl3dNewSwatch Create a new stop watch and return it’s identifier.
tcl3dDeleteSwatch Delete an existing stop watch.
tcl3dStopSwatch Stop a running stop watch.
tcl3dStartSwatch Start a stop watch.
tcl3dResetSwatch Reset a stop watch, i.e. set the time to zero seconds.
tcl3dLookupSwatch Lookup a stop watch and return the elapsed seconds.

Table 4.10: tcl3dUtil: Stop watch commands

Examples

See the demo program spheres.tcl for an example, on how to use these procedures to
measure the rendering frame rate.

Implementation details

The functionality of this module is implemented in the following files:

Implementation files: tcl3dStopWatch.c
Header files: tcl3dStopWatch.h
Wrapper files: util.i

4.2.9 Random number module

This module provides functions to generate random numbers.

Overview

The following table lists the available functions of this module. For a detailled description of the
functions see the Tcl3D Reference Manual [5] or the source code files as listed in section
Implementation details at the end of this chapter.

Tcl command Description
tcl3dNewRandomGen Initialize a new random number generator.
tcl3dDeleteRandomGen Delete a random number generator.
tcl3dGetRandomInt Generate a pseudo-random integer number.
tcl3dGetRandomFloat Generate a pseudeo-random floating point number.

Table 4.11: tcl3dUtil: Random number commands

Examples

See the demo program mandelbrot.tcl for an example, on how to use these procedures to
setup random colors for fractal generation.

Implementation details

The functionality of this module is implemented in the following files:

Implementation files: tcl3dRandom.c
Header files: tcl3dRandom.h
Wrapper files: util.i

Tcl3D User Manual Version 0.3.3, September 2008 Page 39 of 61
Copyright © 2005-2008 by Paul Obermeier. All rights reserved.

4 Modules in detail Tcl3D: Doing 3D with Tcl

4.2.10 3D-Model and shapes module

This module provides functions for reading 3D models in Wavefront format and creating basic
shapes.

Overview

The following tables list the available functions of this module. For a detailled description of the
functions see the Tcl3D Reference Manual [5] or the source code files as listed in section
Implementation details at the end of this chapter.

Tcl command Description
glmUnitize "Unitize" a model by translating it to the origin and scaling it to fit in a

unit cube around the origin.
glmDimensions Calculates the dimensions (width, height, depth) of a model.
glmScale Scales a model by a given amount.
glmReverseWinding Reverse the polygon winding for all polygons in this model.
glmFacetNormals Generates facet normals for a model.
glmVertexNormals Generates smooth vertex normals for a model.
glmLinearTexture Generates texture coordinates according to a linear projection of the

texture map.
glmSpheremapTexture Generates texture coordinates according to a spherical projection of

the texture map.
glmDelete Deletes a GLMmodel structure.
glmReadOBJ Reads a model description from a Wavefront .OBJ file.
glmWriteOBJ Writes a model description in Wavefront .OBJ format to a file.
glmDraw Renders the model to the current OpenGL context using the mode

specified.
glmList Generates and returns a display list for the model using the mode

specified.
glmWeld Eliminate (weld) vectors that are within an epsilon of each other.

Table 4.12: tcl3dUtil: Wavefront reader commands

Tcl command Description
tcl3dCube Draw a textured cube with given center and size.
tcl3dHelix Draw a helix with given center, radius and number of twists.
tcl3dSphere Draw a sphere with given radius precision.

Table 4.13: tcl3dUtil: Shape commands

Examples

See the demo program gaugedemo.tcl for an example, on how to use the Wavefront parser
functions.
See NeHe demo program Lesson23.tcl for an example, on how to use tcl3dCube.
See NeHe demo program Lesson36.tcl for an example, on how to use tcl3dHelix.
See demo program ogl_benchmark_sphere.tcl for an example, on how to use tcl3dSphere.

Implementation details

Tcl3D User Manual Version 0.3.3, September 2008 Page 40 of 61
Copyright © 2005-2008 by Paul Obermeier. All rights reserved.

4 Modules in detail Tcl3D: Doing 3D with Tcl

The tcl3dModel.* and tcl3dModelFmtObj.* files provide a parser for reading model files in
Alias/Wavefront format. The code to read and draw the models is a modified version of the
parser from Nate Robin's OpenGL tutorial [18].
The tcl3dShapes.* files implement a sphere based on an algorithm found at Paul Bourke’s
excellent pages [21] as well as a cube and a helix based on algorithms found in the NeHe
tutorials 23 and 36 [15].

Implementation files: tcl3dModel.c, tcl3dModelFmtObj.c, tcl3dShapes.c
Header files: tcl3dModel.h, tcl3dModelFmtObj.h, tcl3dShapes.h
Wrapper files: util.i

N o t e The standard GLUT shapes are implemented in module tcl3dOgl, see chapter 4.3.

4.2.11 Virtual trackball and arcball module

This module provides functions for emulating a trackball and an arcball.

Overview

The following tables list the available functions of this module. For a detailled description of the
functions see the Tcl3D Reference Manual [5] or the source code files as listed in section
Implementation details at the end of this chapter.

The trackball module implements the following commands:

Tcl command Description
tcl3dTbInit Call this initialization procedure before any other trackball

procedure.
tcl3dTbReshape Call this procedure from the reshape callback.
tcl3dTbMatrix Get the trackball matrix rotation.
tcl3dTbStartMotion Begin trackball movement.
tcl3dTbStopMotion Stop trackball movement.
tcl3dTbMotion Call this procedure from the motion callback.
tcl3dTbAnimate Call with parameter 1 (or $::GL_TRUE), if you want the trackball

to continue spinning after the mouse button has been released.
Call with parameter 0 (or $::GL_FALSE), if you want the
trackball to stop spinning after the mouse button has been
released.

Table 4.14: tcl3dUtil: Trackball commands

The ArcBall module implements the following commands:

Tcl command Description
tcl3dNewArcBall Create new ArcBall with given width and height.
tcl3dDeleteArcBall Delete an ArcBall.
tcl3dSetArcBallBounds Update mouse bounds for ArcBall. Call this procedure from the

reshape callback.
tcl3dArcBallClick Update start vector and prepare for dragging.
tcl3dArcBallDrag Update end vector and get rotation as Quaternion.

Table 4.15: tcl3dUtil: ArcBall commands

Examples

Tcl3D User Manual Version 0.3.3, September 2008 Page 41 of 61
Copyright © 2005-2008 by Paul Obermeier. All rights reserved.

4 Modules in detail Tcl3D: Doing 3D with Tcl

See the demo program ftglDemo.tcl for an example, on how to use the trackball procedures.
See the NeHe demo program Lesson48.tcl for an example, on how to use the ArcBall
procedures.

Implementation details

The functionality of the trackball module is implemented in the following files:

Implementation files: tcl3dTrackball.c, tcl3dTrackball.tcl
Header files: tcl3dTrackball.h
Wrapper files: util.i

The functionality of the ArcBall module is implemented in the following files:

Implementation files: tcl3dArcBall.c
Header files: tcl3dArcBall.h
Wrapper files: util.i

4.3 tcl3dOgl: Wrapper for basic OpenGL functionality

This module wraps OpenGL functionality based on OpenGL Version 1.1, as well as the GLU
library functions based on Version 1.2. This is due to the fact, that Windows still does not
support newer versions of OpenGL. OpenGL features defined in newer versions have to be
accessed via the OpenGL extension mechanism on Windows.
The shapes of the GLUT library (box, sphere, cylinder, teapot, …) with a GLUT compatible
syntax are supplied here, too.

Requirements for this module: An OpenGL 1.1 compatible library. OpenGL header files are
contained in the Tcl3D distribution.

The master SWIG file for wrapping the basic OpenGL library is tcl3dOgl.i.

Basic OpenGL library

Implementation files: tcl3dOglQuery.tcl, tcl3dOglUtil.tcl
Header files: gl.h, glu.h
Wrapper files: gl.i, glu.i

The wrapping for this module is based on the unmodified header files gl.h and glu.h.

The following Tcl3D specific commands are implemented in this module:

Tcl3D User Manual Version 0.3.3, September 2008 Page 42 of 61
Copyright © 2005-2008 by Paul Obermeier. All rights reserved.

4 Modules in detail Tcl3D: Doing 3D with Tcl

Tcl command Description
tcl3dOglGetVersion Get the version of the wrapped OpenGL library.
tcl3dOglHaveExtension Check, if a given OpenGL extension is provided by the

OpenGL implementation.
tcl3dOglHaveVersion Check, if a specific OpenGL version is available.
tcl3dOglGetVersions Query the OpenGL library with the keys GL_VENDOR,

GL_RENDERER, GL_VERSION, GLU_VERSION and return the
results as a list of key-value pairs.

tcl3dOglGetExtensions Query the OpenGL library with the keys GL_EXTENSIONS
and GLU_EXTENSIONS and return the results as a list of
key-value pairs.

tcl3dOglGetStates Query all state variables of the OpenGL library and return
the results as a list of sub-lists. Each sublist contains a flag
indicating the sucess of the query, the querying command
used, the key and the value(s).

tcl3dOglGetIntState Get OpenGL integer state variable.
tcl3dOglGetFloatState Get OpenGL float state variable.
tcl3dOglGetDoubleState Get OpenGL double state variable.
tcl3dOglGetMaxTextureSize Get maximum texture size.
tcl3dOglGetMaxTextureUnits Get maximum number of texture units.
tcl3dOglGetViewport Get current viewport as a 4-element Tcl list.
tcl3dOglGetShaderInfoLog Utility function for easier use of OpenGL function

glGetShaderInfoLog.
tcl3dOglGetProgramInfoLog Utility function for easier use of OpenGL function

glGetProgramInfoLog.
tcl3dOglGetShaderSource Utility function for easier use of OpenGL function

glGetShaderSource.
tcl3dOglGetInfoLogARB Utility function for easier use of OpenGL function

glGetInfoLogARB.

tcl3dOglExtInit Initialize the extension library.
glMultiDrawElements Procedure to implement the OpenGL function

glMultiDrawElements.
tcl3dOglGetGlError Check, if an OpenGL related error has been occurred.
tcl3dOglShaderSource Utility function for easier use of OpenGL function

glShaderSource.

Table 4.16: tcl3dOgl utility commands

N o t e
The functions glGetString and gluGetString as well as the corresponding high-level
functions tcl3dOglGetVersions and tcl3dOglGetExtensions only return correct values,
if a Togl window has been created, i.e. a rendering context has been established.

GLUT shapes library

Implementation files: glutShapes.c, glutTeapot.c, glutShapes.tcl
Header files: glutShapes.h
Wrapper files: tcl3dOgl.i

The shapes library consists of the C files (glutTeapot.c for the teapot, glutShapes.c for all
other shapes and the common header file glutShapes.h) and the Tcl file glutShapes.tcl.

Tcl3D User Manual Version 0.3.3, September 2008 Page 43 of 61
Copyright © 2005-2008 by Paul Obermeier. All rights reserved.

4 Modules in detail Tcl3D: Doing 3D with Tcl

The GLUT shape objects are available under identical names for porting test and demonstration
programs to Tcl3D. These shapes are used extensively in the examples of the OpenGL redbook
[25]. See there for a description of the functions and its parameters.

Solid shapes Wire shapes
glutSolidCone glutWireCone
glutSolidCube glutWireCube
glutSolidDodecahedron glutWireDodecahedron
glutSolidIcosahedron glutWireIcosahedron
glutSolidOctahedron glutWireOctahedron
glutSolidSphere glutWireSphere
glutSolidTeapot glutWireTeapot
glutSolidTetrahedron glutWireTetrahedron
glutSolidTorus glutWireTorus

Table 4.17: tcl3dOgl GLUT shape commands

N o t e The teapot implementation differs in the original and the freeglut implementation. If
using the teapot in a benchmark application, note that:
Freeglut uses 7 for the grid parameter.
Original GLUT and Tcl3D use 14 as grid parameter.

All supported GLUT shapes (Demo glutShapes.tcl)

Examples

The following code snippet shows how to call tcl3dOglGetVersions.

foreach glInfo [tcl3dOglGetVersions] {
 puts "[lindex $glInfo 0]: [lindex $glInfo 1]"
}

GL_VENDOR: NVIDIA Corporation
GL_RENDERER: GeForce FX Go5600/AGP/SSE2
GL_VERSION: 1.4.0
GLU_VERSION: 1.2.2.0 Microsoft Corporation

The following code snippet shows how to call tcl3dOglGetExtensions.

foreach glInfo [tcl3dOglGetExtensions] {
 puts "[lindex $glInfo 0]:"
 foreach ext [lsort [lindex $glInfo 1]] {
 puts "\t$ext"
 }
}

Tcl3D User Manual Version 0.3.3, September 2008 Page 44 of 61
Copyright © 2005-2008 by Paul Obermeier. All rights reserved.

4 Modules in detail Tcl3D: Doing 3D with Tcl

GL_EXTENSIONS:
GL_ARB_depth_texture
GL_ARB_fragment_program
GL_ARB_imaging
…

GLU_EXTENSIONS:
GL_EXT_bgra

The following code snippet shows how to call tcl3dOglGetStates.

foreach glState [tcl3dOglGetStates] {
 set msgStr "[lindex $glState 2]: [lrange $glState 3 end]"
 if { [lindex $glState 0] == 0 } {
 set tag "(Unsupported)"
 } else {
 set tag ""
 }
 append msgStr $tag
 puts $msgStr
}

GL_VERTEX_ARRAY_SIZE: 4
GL_VERTEX_ARRAY_TYPE: 5126
GL_VERTEX_ARRAY_STRIDE: 0
GL_VERTEX_ARRAY_POINTER: --(Unsupported)
GL_NORMAL_ARRAY: 0
GL_NORMAL_ARRAY_TYPE: 5126

See the demo program tcl3dInfo.tcl for other examples, on how to use these procedures.

4.4 tcl3dOglExt: Wrapper for enhanced OpenGL functionality

This module wraps OpenGL functionality based on versions 1.2 till 2.0, lots of OpenGL
extensions not contained in the OpenGL core, as well as Windows specific extensions.
The files of this logical building block are contained in the same directory as the basic OpenGL
wrapper files for practial compilation reasons.

This is an optional module.
Requirements for this module: An OpenGL compatible library. OpenGL header files are
contained in the Tcl3D distribution. To have access to all wrapped features, the OpenGL library
should support Version 2.0.

The master SWIG file for wrapping the enhanced OpenGL library is tcl3dOgl.i.

Implementation files: See subdirectory OglExt
Header files: glext.h, glprocs.h
Wrapper files: glext.i, wglext.i

The wrapping of OpenGL extensions and functions from versions greater 1.1 is defined in file
glext.i and based on the header file glext.h. This header file is part of OglExt [13], an OpenGL
extension library from the research center caesar. It has been slightly modified to fit the needs
of Tcl3D.
The wrapping of Windows specific OpenGL functions is defined in file wglext.i and based on
the header file glprocs.h from Intel’s GLsdk [14] library. The GLsdk is an extension library

Tcl3D User Manual Version 0.3.3, September 2008 Page 45 of 61
Copyright © 2005-2008 by Paul Obermeier. All rights reserved.

4 Modules in detail Tcl3D: Doing 3D with Tcl

similar to the OglExt library. It has been stripped down to only use the Windows specific
OpenGL functions.

N o t e If using functions from this module, be sure to add a call to tcl3dOglExtInit in the
create callback. This initialization is necessary due to a bug in the OglExt library.
The wrapping of Windows specific extensions will be removed in future releases. All platform
specific code will be part of the Togl widget.

See the demo program extensions.tcl for an example, on how to use OpenGL extensions.

4.5 tcl3dCg: Wrapper for NVidia’s Cg shading language

This module wraps NVidia’s Cg [7] library based on version 1.5.0015 and adds some Cg related
utility procedures.

This is an optional module.
Requirements for this module: The Cg library and header files.

 Runtime libraries are included in distribution.

The master SWIG file for wrapping the Cg library is tcl3dCg.i.

Implementation files: tcl3dCgQuery.tcl, tcl3dCgUtil.tcl
Header files: All files in subdirectory Cg
Wrapper files: cg.i

The wrapping for this module is based on the unmodified Cg header files.

Cg utility module

Tcl command Description
tcl3dCgGetVersion Get the version of the wrapped Cg library.

tcl3dCgGetError Check, if a Cg related error has occured.
tcl3dCgGetProfileList Get a list of Cg profile names.
tcl3dCgFindProfile Find a supported Cg profile by name.
tcl3dCgFindProfileByNum Find a supported Cg profile by it's numerical value.
tcl3dCgPrintProgramInfo Print the Cg program information onto standard output.

Table 4.18: tcl3dCg utility commands

See the demo programs contained in directory LibrarySpecificDemos/tcl3dCg for examples,
on how to use the Cg functions.

4.6 tcl3dSDL: Wrapper for the Simple DirectMedia Library

This module wraps the SDL [8] library based on version 1.2.9 and adds some SDL related utility
procedures.
Currently only the functions related to joystick and CD-ROM handling have been wrapped and
tested.

This is an optional module.
Requirements for this module: The SDL library and header files.

 Libraries and header files are included in distribution.

Tcl3D User Manual Version 0.3.3, September 2008 Page 46 of 61
Copyright © 2005-2008 by Paul Obermeier. All rights reserved.

4 Modules in detail Tcl3D: Doing 3D with Tcl

The master SWIG file for wrapping the Simple DirectMedia library is tcl3dSDL.i.

Implementation files: tcl3dSDLQuery.tcl, tcl3dSDLUtil.tcl
Header files: All files in subdirectory include
Wrapper files: sdl.i

The wrapping for this module is based on the unmodified SDL header files.

SDL utility module

Tcl command Description
tcl3dSDLGetVersion Get the version of the wrapped SDL library.
tcl3dSDLGetFocusName Convert a SDL focus state bitfield into a string representation.
tcl3dSDLGetButtonName Convert a SDL button state bitfield into a string representation.
tcl3dSDLGetHatName Convert SDL hat related enumerations into a string

representation.
tcl3dSDLGetEventName Convert SDL event related enumerations into a string

representation.
tcl3dSDLFrames2MSF Convert CD frames into minutes/seconds/frames.
tcl3dSDLGetTrackTypeName Convert SDL CD track type enumerations into a string

representation.
tcl3dSDLGetCdStatusName Convert SDL CD status enumerations into a string

representation.

Table 4.19: tcl3dSDL utility commands

See the demo programs contained in directory LibrarySpecificDemos/tcl3dSDL for examples,
on how to use the SDL functions.

4.7 tcl3dFTGL: Wrapper for the OpenGL Font Rendering Library

This module wraps the FTGL [9] library based on version 2.1.2 and adds some FTGL related
utility procedures.
The FTGL library depends on the Freetype2 library [10].

This is an optional module.
Requirements for this module: The FTGL and Freetype2 library and header files.

 Libraries and header files are included in distribution.

The master SWIG file for wrapping the OpenGL Font Rendering library is tcl3dFTGL.i.

Implementation files: tcl3dFTGLQuery.tcl, tcl3dFTGLUtil.tcl
Header files: All files in subdirectory include
Wrapper files: ftgl.i

The wrapping for this module is based on the unmodified FTGL header files.

FTGL utility module

Tcl command Description
tcl3dFTGLGetVersion Get the version of the wrapped FTGL library.
tcl3dFTGLGetBBox Get bounding box of a string.

Table 4.20: tcl3dFTGL utility commands

Tcl3D User Manual Version 0.3.3, September 2008 Page 47 of 61
Copyright © 2005-2008 by Paul Obermeier. All rights reserved.

4 Modules in detail Tcl3D: Doing 3D with Tcl

See the demo programs contained in directory LibrarySpecificDemos/tcl3dFTGL for
examples, on how to use the FTGL functions.

4.8 tcl3dGl2ps: Wrapper for the OpenGL To Postscript Library

This module wraps Christophe Geuzaine’s GL2PS [11] library based on version 1.3.2 and adds
some GL2PS related utility procedures.

N o t e Gl2PS currently does not support textures.

This is an optional module.
Requirements for this module: None, all files are contained in the Tcl3D distribution.

The master SWIG file for wrapping the Simple DirectMedia library is tcl3dGl2ps.i.

Implementation files: gl2ps.c, tcl3dGl2psQuery.tcl, tcl3dGl2psUtil.tcl
Header files: gl2ps.h
Wrapper files: gl2ps.i

The wrapping for this module is based on the unmodified GL2PS implementation and header
files.

Gl2ps utility module

Tcl command Description
tcl3dGl2psGetVersion Get the version of the wrapped GL2PS library.
tcl3dGl2psCreatePdf Create a PDF file from current Togl window content.

Table 4.21: tcl3dGl2ps utility commands

See NeHe demo Lesson02.tcl or the benchmarking demo sphere.tcl in directory
LibrarySpecificDemos/tcl3dOgl for an example, on how to use the GL2PS functions for PDF
export.

4.9 tcl3dOde: Wrapper for the Open Dynamics Engine

This module wraps the ODE [12] library based on version 0.7 and adds some ODE related utility
procedures.

N o t e This module is still work in progress. It’s interface may change in the future.

This is an optional module.
Requirements for this module: The ODE library and header files.

 Libraries and header files are included in distribution.

The master SWIG file for wrapping the Open Dynamics Engine library is tcl3dOde.i.

Implementation files: tcl3dOdeQuery.tcl, tcl3dOdeUtil.tcl
Header files: All files in subdirectory ode
Wrapper files: ode.i

The wrapping for this module is based on the unmodified ODE header files.

Tcl3D User Manual Version 0.3.3, September 2008 Page 48 of 61
Copyright © 2005-2008 by Paul Obermeier. All rights reserved.

4 Modules in detail Tcl3D: Doing 3D with Tcl

ODE utility module

Tcl command Description
tcl3dOdeGetVersion Get the version of the wrapped ODE library.

Table 4.22: tcl3dOde utility commands

See the demo programs contained in directory LibrarySpecificDemos/tcl3Ode for examples,
on how to use the ODE functions.

4.10tcl3dGauges: Tcl3D package for displaying gauges

This package implements the following gauges: airspeed, altimeter, compass, tiltmeter.

This is an optional module.
Requirements for this module: None, all files are contained in the Tcl3D distribution.

The gauge package has been implemented by Victor G. Bonilla.

See the demo programs gaugedemo.tcl and gaugetest.tcl for examples, on how to use the
gauges.

4.11tcl3dDemoUtil: C/C++ based utilities for demo applications

This package implements several C/C++ based utility functions for some of the demo
applications.

This is an optional module.
Requirements for this module: None, all files are contained in the Tcl3D distribution.

The master SWIG file for wrapping the demo utility library is tcl3dDemoUtil.i.

The following submodules are contained in this module:

Name: tcl3dOglLogo
Implementation files: tcl3dOglLogo.c
Header files: tcl3dOglLogo.h
Wrapper files: demoutil.i

tcl3dOglLogo implements an animated 3-dimensional OpenGL logo.
It is used in demo animlogo.tcl in directory LibrarySpecificDemos/tcl3dOgl.

Name: tcl3dReadRedBookImg
Implementation files: tcl3dReadRedBookImg.c
Header files: tcl3dReadRedBookImg.h
Wrapper files: demoutil.i

tcl3dReadRedBookImg implements a parser for the simple image file format used in some of
the RedBook demos.
It is used in demos colormatrix.tcl, colortable.tcl, convolution.tcl, histogram.tcl and
minmax.tcl in directory TutorialsAndBooks/RedBook.

Tcl3D User Manual Version 0.3.3, September 2008 Page 49 of 61
Copyright © 2005-2008 by Paul Obermeier. All rights reserved.

4 Modules in detail Tcl3D: Doing 3D with Tcl

Name: tcl3dHeightmap
Implementation files: heightmap.i, tcl3dHeightMap.tcl
Header files: None
Wrapper files: heightmap.i

tcl3dHeightmap implements a photo image to heightmap converter.
It is used in NeHe demo Lesson45.tcl in directory TutorialsAndBooks/NeHe.

Tcl3D User Manual Version 0.3.3, September 2008 Page 50 of 61
Copyright © 2005-2008 by Paul Obermeier. All rights reserved.

5 Miscellaneous Tcl3D information Tcl3D: Doing 3D with Tcl

5 Miscellaneous Tcl3D information

This chapter contains various information about Tcl3D.

5.1 License information

The Tcl3D utility library files (see below for exceptions) are copyrighted by Paul Obermeier and
distributed under the BSD license.
The following files of the Tcl3D utility library have differing copyrights:

• The original Wavefront parser code is copyrighted by Nate Robins.
• The original GLUT shape code is copyrighted by Mark Kilgard.
• The original code of tcl3dSphere is copyrighted by Paul Bourke.
• The original code of tcl3dHelix is copyrighted by Dario Corno.
• The original code of tcl3dArcBall is copyrighted by Tatewake.com.
• The original code of tcl3dTrackball is copyrighted by Gavin Bell et al.

The Tcl3D gauge library is copyrighted by Victor G. Bonilla and distributed under the BSD
license.

The original Togl widget is copyrighted by Brian Paul and Benjamin Bederson. The modified
Tcl3D version is copyrighted by Paul Obermeier and distributed under the BSD license.

The SWIG wrapper files and supporting Tcl files of all modules are copyrighted by Paul
Obermeier and distributed under the BSD license.

See the homepages of the wrapped libraries for their license conditions.

5.2 Programming hints

Hint 1:
Most OpenGL examples written in C use the immediate mode. As Tcl is a scripted language
and each OpenGL call has to go through the wrapper interface, it’s almost always a bad idea (in
terms of speed) to translate these examples one-by-one. Using display lists or vertex arrays
does not add much complexity to your Tcl3D program, but enhances performance significantly.
Try the Spheres.tcl or ogl_benchmark_sphere.tcl demo for an example, how display lists or
vertex arrays can speed up your Tcl3D application.

Hint 2:
Do not use global variables GL_VERSION_X_Y (ex. [info exists GL_VERSION_1_3]) to
check the OpenGL version supported on your computer. This does not work, because these
variables are defined in the range 1_1 till 2_0 in Tcl3D. Use the utility function
tcl3dHaveExtension instead.

Hint 3:
Error: expected integer but got "GL_REPEAT"

Some OpenGL functions expect an integer or floating point value, which is often given in C code
examples with an enumeration, as shown in the next example:

extern void glTexParameteri (GLenum target, GLenum pname, GLint param);

It is called in C typically as follows:
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);

Tcl3D User Manual Version 0.3.3, September 2008 Page 51 of 61
Copyright © 2005-2008 by Paul Obermeier. All rights reserved.

5 Miscellaneous Tcl3D information Tcl3D: Doing 3D with Tcl

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);

As the 3rd parameter is not of type GLenum, you have to specify the numerical value in Tcl:
glTexParameteri GL_TEXTURE_2D GL_TEXTURE_WRAP_S $::GL_REPEAT
glTexParameteri GL_TEXTURE_2D GL_TEXTURE_MAG_FILTER $::GL_NEAREST

If called with the enumeration name:
glTexParameteri GL_TEXTURE_2D GL_TEXTURE_WRAP_S GL_REPEAT
you will get the above error message.

Hint 4:
Error: expected floating-point number but got “_08201905_p_float”.

This error message indicates, that a tcl3dVector has been specified as parameter to a
function, which expects a Tcl list. This often happens, when using one of the glMultMatrix
commands. Use a sequence like shown below to convert the tcl3dVector into a Tcl list before
supplying it to the function:

set matAsList [tcl3dVectorToList $mat 16]
glMultMatrixf $matAsList

Hint 5:
Error: Package tcl3dcg: couldn't load library "C:/Tcl/lib/tcl3d/tcl3dCg/tcl3dCg.dll":
this library or a dependent library could not be found in library path

This typically indicates that the dependent library or libraries (ex. cg.dll or cgGL.dll) are not
found, i.e. they are not in a directory contained in your Path environment variable.

Error: Package tcl3dcg: couldn't load library "C:/Tcl/lib/tcl3d/tcl3dCg/tcl3dCg.dll":
 permission denied

This typically indicates that the dependent library or libraries (ex. cg.dll or cgGL.dll) were
found, but you do not have the permissions to execute the library.

These errors may occur with the following Tcl3D modules:

Tcl 3D module Affected libraries
tcl3dCg cg.dll cgGL.dll
tcl3dFTGL libftgl.dll freetype6.dll
tcl3dOde ode.dll
tcl3dSDL SDL.dll

Although the examples shown in this hint use Windows specific library names, the above
mentioned errors may occur on Unix systems as well.

5.3 Open issues

• GLU callbacks are currently not supported. This implies, that tesselation does not work,
because this functionality relies heavily on the usage of C callback functions.

• There is currently no possibility to specify a color map for OpenGL indexed mode. As color
maps depend on the underlying windowing system, this feature must be handled by the Togl
widget.

Tcl3D User Manual Version 0.3.3, September 2008 Page 52 of 61
Copyright © 2005-2008 by Paul Obermeier. All rights reserved.

5 Miscellaneous Tcl3D information Tcl3D: Doing 3D with Tcl

5.4 Known bugs

• The tiltmeter widget from the tcl3dGauge package is not working correctly with Tcl versions
less than 8.4.7, because of a bug in the namespace implementation.

• Picking with depth values does not work correctly, as depth is returned as an unsigned int,
mapping the internal floating-point depth values [0.0 .. 1.0] to the range [0 .. 232 –1]. As Tcl
only supports signed integers, some depth values are incorrectly transferred into the Tcl
commands.

• SWIG versions up to 1.3.24 had an annoying (but not critical) bug in the Tcl library file
swigtcl8.swg: Please check, if your version has a line “printf (“Searching %s\n”,
key);” in function SWIG_Tcl_GetConstant, and delete this line, if existent.
swigtcl8.swg can be found in /usr/lib/swig1.3/tcl or /usr/share/swig/VERSION/tcl on
Linux or in the lib/tcl subdirectory of your SWIG Windows installation.

• SWIG version 1.3.21 (as delivered with SuSE 9.3) does not correctly wrap the ODE library.
• The PDF files generated with Gl2ps are not displayed correctly with the Preview program on

a Mac. Acrobat Reader displays them correctly.
• tcl3dOglGetVersion dumps core on Mac OSX, if no Togl window has been created. On

other systems, the function returns an empty string in that case. See also the note in chapter
4.2.2.

• Build process stops when environment variable DISPLAY is not set or access to DISPLAY is
denied.
This is due to the script createStateList.tcl, which converts the ASCII representation of the
OpenGL state variables into Tcl package code. The state list is created in a boots-trapping
process, which needs to have a valid OpenGL context established. Therefore a Togl window
has to be opened and this window needs acess to the DISPLAY.
For a temporary workaround see the Tcl'lers Wiki at http://wiki.tcl.tk/16057.
This bootstrap process will be removed in a future Tcl3D version and replaced by a pre-built
tcl3dStateList.tcl file.

5.5 Starpack internals

For an introduction to Tclkits, Starkits and Starpacks see Jean-Claude Wippler’s homepage at
http://www.equi4.com/.

5.5.1 Starpack issue #1

If shipping external libraries with your Starpack, you have to copy them to the file system, before
they can be used. A convenient place is the directory containing the Starpack.

Check if all necessary external libraries exists in the directory
containing the Starpack. Copy them to the filesystem, if necessary.
set __tcl3dExecDir [file dirname $::starkit::topdir]
set __tcl3dDllList [glob -nocomplain -dir [file join $starkit::topdir extlibs] \
 [info sharedlibextension]]

foreach starkitName $__tcl3dDllList {
 set osName [file join $__tcl3dExecDir [file tail $starkitName]]
 if { ! [file exists $osName] } {
 set retVal [catch { file copy -force -- $starkitName $__tcl3dExecDir }]
 puts "Copying DLL $starkitName to directory $__tcl3dExecDir"
 if { $retVal != 0 } {
 error "Error copying DLL $starkitName to directory $__tcl3dExecDir"
 }
 }
}

Tcl3D User Manual Version 0.3.3, September 2008 Page 53 of 61
Copyright © 2005-2008 by Paul Obermeier. All rights reserved.

http://www.equi4.com/

5 Miscellaneous Tcl3D information Tcl3D: Doing 3D with Tcl

This aforementioned solution seems to be the best possible solution today, but has the following
two disadvantages:

• Windows user will typically place the Starpack onto the desktop. Starting the Starpack
inflates the desktop with lots of DLL‘s.

• On Linux/Unix the current directory typically is not included in the LD_LIBRARY_PATH
variable.

That's why the starpacks are distributed in it's own folder, and the Unix distributions come with
an additional start shell script: tcl3dsh-OS-VERSION.sh

#!/bin/sh
Startup script for tcl3dsh, the Tcl3D Starpack.

LD_LIBRARY_PATH=".:$LD_LIBRARY_PATH"
LD_LIBRARYN32_PATH=".:$LD_LIBRARYN32_PATH"
export LD_LIBRARY_PATH
export LD_LIBRARYN32_PATH

./tcl3dsh-Linux-0.3.3 $*

5.5.2 Starpack issue #2

Some of the external libraries need files for initialization, ex. the FTGL library needs the name of
a TrueType font file to construct it‘s OpenGL commands. This font file has to be on the real
filesystem, so that the FTGL library can find it, and not in the virtual filesystem of the starpack.
Tcl3D supports a utility procedure tcl3dGetExtFile, which you should use, if intending to
use a Tcl3D script - depending on such a library - in a Starpack. See chapter 4.2.3 for a
description of the Starpack related file utilities.

A typical usage is shown in the following code segment:

set fontfile [file join [file dirname [info script]] "Vera.ttf"]
tcl3dGetExtFile is available only in versions 0.3.1 and up.
You may check availability of command first, if running scripts with older
Tcl3D versions.
if { [info proc tcl3dGetExtFile] eq "tcl3dGetExtFile" } {
 # Get the font file in a Starpack independent way.
 set fontfile [tcl3dGetExtFile $fontfile]
}

Tcl3D User Manual Version 0.3.3, September 2008 Page 54 of 61
Copyright © 2005-2008 by Paul Obermeier. All rights reserved.

6 Demo applications Tcl3D: Doing 3D with Tcl

6 Demo applications

More than 100 Tcl3D applications for testing and demonstration purposes are currently
available. Most of these applications were converted from existing demonstration programs
written in C/C++ found on the web. A detailed list of all demos is available online on the Tcl3D
homepage at http://www.tcl3d.org/demos/ or in the Tcl3D Demo Manual.

The Tcl3D demo applications are divided into 3 categories:
• Category Tutorials and books contains scripts, which have been converted from C/C++

to Tcl3D, coming from the following sources:
 OpenGL Red Book [19]
 NeHe tutorials [15]
 Kevin Harris CodeSampler web site [16]
 Vahid Kazemi’s GameProgrammer page [17]

• Category Library specific demos contains scripts showing features specific to the
wrapped library.

• Category Tcl3D specific demos contains scripts demonstrating and testing Tcl3D
specific features.

The next figure shows an excerpt from the demo hierarchy.

Tcl3D User Manual Version 0.3.3, September 2008 Page 55 of 61
Copyright © 2005-2008 by Paul Obermeier. All rights reserved.

Illustration 6.1: Tcl3D demo hierarchy

Tcl3D Demo Hierarchy

http://www.tcl3d.org/demos/

7 Release notes Tcl3D: Doing 3D with Tcl

7 Release notes

This chapter shows the release and feature history of Tcl3D both graphically and in text form. It
also contains a list of obsolete functions.

7.1 Release history

Tcl-Level

C/C++-Level

SWIG generated Tcl interfaces

Tcl3D Demos and Applications

tcl3dUtil
Tcl-based Utilities

Tcl-Interface

tcl3dOgl
Basic OpenGL

tcl3dUtil
C-based Utilities

tcl3dTogl
OpenGL Widget

Released 2005/05/29 as TclOgl: Basic OpenGL wrapping, Togl widget with Tcl callbacks.

Tcl3D Version 0.1

Tcl-Level

C/C++-Level

SWIG generated Tcl interfaces

Tcl3D Demos and Applications

tcl3dUtil
Tcl-based Utilities

tcl3dGauges
Tcl Extension Package

Tcl-Interface

tcl3dOgl
Basic OpenGL

tcl3dOglExt
Extended OpenGL

tcl3dUtil
C-based Utilities

tcl3dTogl
OpenGL Widget

tcl3dCg
Cg Shading

tcl3dSDL
Joystick

Released 2006/01/07: Major rewrite and support of new libraries: OpenGL 2.0, OpenGL
extensions, Cg, SDL, gauges. Domain www.tcl3d.org created.

Tcl3D Version 0.2

Tcl-Level

C/C++-Level

SWIG generated Tcl interfaces

Tcl3D Demos and Applications

tcl3dUtil
Tcl-based Utilities

tcl3dGauges
Tcl Extension Package

Tcl-Interface

tcl3dOgl
Basic OpenGL

tcl3dOglExt
Extended OpenGL

tcl3dUtil
C-based Utilities

tcl3dTogl
OpenGL Widget

(Better font handling)
tcl3dCg

Cg Shading
tcl3dFTGL

Font Rendering
tcl3dSDL

Joystick and CD

Released 2006/02/12: Enhanced font handling in Togl. Library FTGL added. Mac OS X
support supplied by Daniel Steffen.

Tcl3D Version 0.3

Tcl-Level

C/C++-Level

SWIG generated Tcl interfaces

Tcl3D Demos and Applications

tcl3dUtil
Tcl-based Utilities

tcl3dGauges
Tcl Extension Package

Tcl-Interface

tcl3dOgl
Basic OpenGL

tcl3dOglExt
Extended OpenGL

tcl3dUtil
C-based Utilities

tcl3dTogl
OpenGL Widget

tcl3dCg
Cg Shading

tcl3dFTGL
Font Rendering

tcl3dSDL
Joystick and CD

tcl3dGl2ps
OpenGL to PS/PDF

tcl3dOde
Physics Engine

Released 2006/06/16: Support for GL2PS and ODE (alpha) added. Starpack versions.

Tcl3D Version 0.3.1

Tcl-Level

C/C++-Level

SWIG generated Tcl interfaces

Tcl3D Demos and Applications

tcl3dUtil
Tcl-based Utilities

tcl3dGauges
Tcl Extension Package

Tcl-Interface

tcl3dOgl
Basic OpenGL

tcl3dOglExt
Extended OpenGL

tcl3dUtil
C-based Utilities

tcl3dTogl
OpenGL Widget

tcl3dCg
Cg Shading

tcl3dFTGL
Font Rendering

tcl3dSDL
Joystick and CD

tcl3dGl2ps
OpenGL to PS/PDF

tcl3dOde
Physics Engine

Released 2007/02/25: Demo cleanup and first official Mac OS X support. Windowing
system specifics incorporated into Togl widget. New module tcl3dDemoUtil.

Tcl3D Version 0.3.2

tcl3dDemoUtil
C utilities for demos

Tcl-Level

C/C++-Level

SWIG generated Tcl interfaces

Tcl3D Demos and Applications

tcl3dUtil
Tcl-based Utilities

tcl3dGauges
Tcl Extension Package

Tcl-Interface

tcl3dOgl
Basic OpenGL

tcl3dOglExt
Extended OpenGL

tcl3dUtil
C-based Utilities

tcl3dTogl
OpenGL Widget

tcl3dCg
Cg Shading

tcl3dFTGL
Font Rendering

tcl3dSDL
Joystick and CD

tcl3dGl2ps
OpenGL to PS/PDF

tcl3dOde
Physics Engine

Released 2008/09/14: Bug fixes, minor enhancements and several new demos.

Tcl3D Version 0.3.3

tcl3dDemoUtil
C utilities for demos

Illustration 7.1: Tcl3D graphical release history

Tcl3D User Manual Version 0.3.3, September 2008 Page 56 of 61
Copyright © 2005-2008 by Paul Obermeier. All rights reserved.

7 Release notes Tcl3D: Doing 3D with Tcl

Version 0.3.3 (2008/09/14): Bug fix and maintenance release
 - Enhancements:
 + Added 64-bit Linux to the supported list of platforms.
 + Improved Mac OS X support:
 Fixed resize problems in presentation framework.
 Consistent mouse button behaviour across operating systems.
 + Trackball module supports multiple windows.
 CAUTION: Incompatible change. Additional Togl window parameter in
 procedures tcl3dTbAnimate, tcl3dTbInit, tcl3dTbMatrix.
 Thanks to Michael Magoga for this patch.
 + New OpenGL utility procedures:
 tcl3dOglGetIntState, tcl3dOglGetFloatState, tcl3dOglGetDoubleState.
 tcl3dOglGetMaxTextureSize, tcl3dOglGetMaxTextureUnits,
 tcl3dOglGetViewport, tcl3dOglGetShaderInfoLog, tcl3dOglGetProgramInfoLog,
 tcl3dOglGetShaderSource, tcl3dOglShaderSource, tcl3dOglGetInfoLogARB.
 + New low-level routines for copying Tcl lists into a vector:
 tcl3dListToVector_TYPE
 Tcl utility procedure tcl3dVectorFromList updated to transparently use the
 new low-level routines.
 + Starpacks now allow drag-and-drop of TclKit files.
 + tcl3dGetExtFile not constrained to Starkits anymore.
 Thanks to Jean-Claude Gohard for supplying a vfs and zvfs enabled version.
 + New utility functions for random number generation (same algorithm at C
 and Tcl level).
 - Bug fixes:
 + Bug fix in tcl3dGauges: Eliminated bgerror procedures.
 Thanks to Alexandre Ferrieux and Synic for hints on this bug.
 + Several bug fixes in the presentation framework.
 Thanks to Philip Quaiffe for hints and other useful discussions.
 + Several other minor bug fixes.
 - New demos:
 + 19 new demos added since release 0.3.2.
 These have been previously released as Tcl3D Demo of the month.
Version 0.3.2 (2007/02/25): Demo cleanup and first official Mac OS X support
 - Unification of demo applications and presentation framework.
 - New module tcl3dDemoUtil for C/C++ based utility functions needed by
 some of the demos for speed issues.
 - More NeHe tutorials added: Lessons 14, 22-24, 26, 28, 33, 36, 37, 41, 45-48.
 - Nine demos from www.GameProgrammer.org added.
 - Updated Tcl3D manual. Created separate demo overview document.
 - Added support to capture screenshots (Module tcl3dCapture).
 - Added new functionality to tcl3dUtil: ArcBall emulation.
 - Added windowing system specifics (SwapInterval, Multisampling) to the
 tcl3dTogl widget.
 - Added support for Visual Studio 2003 (7.1) and 2005 (8.0).
 - Enhanced tcl3dVector functionality.
 + Utility functions for manipulation of image data stored in tcl3dVectors:
 tcl3dVectorCopy, tcl3dVectorCopyChannel,
 tcl3dVectorManip, tcl3dVectorManipChannel
 + tcl3dVector member functions for content independent manipulation:
 setvec, addvec, mulvec
 - tcl3dOde now uses ODE version 0.7 and is available for Windows, Linux,
 Mac OS X and Irix. Wrapper still in alpha version and not complete.
 - tcl3dGl2ps now uses GL2PS version 1.3.2.
 - tcl3dCg now uses Cg version 1.5.0015.
 The 1.4 versions of Cg did not work with OS X on Intel platforms.
Version 0.3.1 (2006/06/19): Starpack support for Tcl3D
 - Starpack version of Tcl3D, including demos and external libraries.
 First shown at TclEurope 2006.
 - New optional module tcl3dGl2ps, wrapping the OpenGL To Postscript library.
 (Thanks to Ian Gay for idea and first implementation)
 - New optional module tcl3dOde, wrapping the Open Dynamics Engine.
 Very alpha preview, Windows only !!!
 - More NeHe tutorials added: Lessons 19-21.
Version 0.3 (2006/02/12): MacOS X and enhanced font support
 - Support for Mac OS X added.

Tcl3D User Manual Version 0.3.3, September 2008 Page 57 of 61
Copyright © 2005-2008 by Paul Obermeier. All rights reserved.

7 Release notes Tcl3D: Doing 3D with Tcl

 (Thanks to Daniel A. Steffen for supplying patches and binaries)
 - New optional module tcl3dFTGL, wrapping the OpenGL font rendering
 library FTGL, based on freetype fonts.
 - Corrected and enhanced font handling under Windows in the tcl3dTogl widget.
 No more private Tcl header files needed.
 - Added new font related demo programs:
 tcl3dFont.tcl, tcl3dToglFonts.tcl, ftglTest.tcl, ftglDemo.tcl.
 - Added new SDL demo related to CD-ROM handling: cdplayer.tcl
 - Added some of NeHe's OpenGL tutorials.
 - If an optional library is not installed, no error message is created.
 New procedures to check existence of optional modules:
 tcl3dHaveCg, tcl3dHaveSDL, tcl3dHaveFTGL.
 - Get information on Tcl3D subpackages with tcl3dGetPackageInfo
 and tcl3dShowPackageInfo.
 - Information program tcl3dInfo.tcl enhanced to support commands
 and enums of SDL and FTGL modules.
 - Added new functionality to tcl3dUtil: Simple, scrollable Tk widgets
 for demo programs, trackball emulation (used in FTGLdemo.tcl).
 - Added new functionality to tcl3dUtil:
 tcl3dVectorFromByteArray, tcl3dVectorToByteArray.
 Convert Tcl binary strings to tcl3dVectors and vice versa
 (see demo bytearray.tcl).
 - Bug fix in OglExt wrapping: Parameters of type "float *"
 and "double *" were wrapped incorrectly.
Version 0.2 (2006/01/07): Major rewrite of TclOgl
 - Major rewrite and inclusion of several new 3D libraries:
 + OpenGL 2.0 and extensions
 + NVidia's Cg library
 + SDL, the Simple Direct Media Library
 + 4 gauge widgets (Thanks to Victor G. Bonilla for supplying this library)
 + Utility library
 - Renamed from tclogl to Tcl3D
 - Created domain tcl3d.org
Version 0.1 (2005/05/29): Initial version
 - First version (called TclOgl) introduced at the Tcl Europe 2005 conference.
 - Supported features include basic OpenGL wrapping.

7.2 Obsolete functions

The following table shows all obsolete functions.
These functions are still available, but may be removed in future versions.

Tcl3D User Manual Version 0.3.3, September 2008 Page 58 of 61
Copyright © 2005-2008 by Paul Obermeier. All rights reserved.

7 Release notes Tcl3D: Doing 3D with Tcl

Version Old Name New Name

0.3.2

tcl3dCheckCgError tcl3dCgGetError
tcl3dGetCgProfileList tcl3dCgGetProfileList
tcl3dFindCgProfile tcl3dCgFindProfile
tcl3dFindCgProfileByNum tcl3dCgFindProfileByNum
tcl3dPrintCgProgramInfo tcl3dCgPrintProgramInfo
tcl3dHeightMapFromPhoto tcl3dDemoUtilHeightMapFromPhoto
tcl3dReadImage tcl3dReadRedBookImage
tcl3dCreatePdf tcl3dGl2psCreatePdf
tcl3dInit tcl3dOglExtInit
tcl3dCheckGlError tcl3dOglGetError
tcl3dPhoto2Vector tcl3dPhotoToVector

0.3.3

tcl3dHaveExtension tcl3dOglHaveExtension
tcl3dHaveVersion tcl3dOglHaveVersion
tcl3dGetVersions tcl3dOglGetVersions
tcl3dGetExtensions tcl3dOglGetExtensions
tcl3dGetStates tcl3dOglGetStates
tcl3dVector2Photo tcl3dVectorToPhoto

Table 7.1: List of obsolete functions

Tcl3D User Manual Version 0.3.3, September 2008 Page 59 of 61
Copyright © 2005-2008 by Paul Obermeier. All rights reserved.

8 References Tcl3D: Doing 3D with Tcl

8 References

Tcl3D specific references:
[1] Tcl3D homepage: http://www.tcl3d.org/

[2] Tcl3D page on the Tclers Wiki: http://wiki.tcl.tk/15278

[3] Tcl3D discussion page on the Tclers Wiki: http://wiki.tcl.tk/16057

[4] Tcl3D “Demo of the month” page on the Tclers Wiki: http://wiki.tcl.tk/17771

[5] Tcl3D Reference Manual: http://www.tcl3d.org/html/docs.html

Libraries wrapped with Tcl3D:
[6] Togl page at SourceForge: http://sourceforge.net/projects/togl/

[7] Cg download: http://developer.nvidia.com/object/cg_toolkit.html

[8] SDL download: http://www.libsdl.org/

[9] FTGL download: http://homepages.paradise.net.nz/henryj/code/index.html

[10] Freetype download: http://www.freetype.org/

[11] GL2PS download: http://www.geuz.org/gl2ps/

[12] ODE download: http://www.ode.org/

[13] OglExt Julius Caesar: http://www.julius.caesar.de/index.php/OglExt

[14] GLsdk library: http://oss.sgi.com/projects/ogl-sample/sdk.html

Demos used in Tcl3D:
[15] NeHe’s tutorials: http://nehe.gamedev.net/

[16] Kevin Harris’ code samples: http://www.codesampler.com/oglsrc.htm

[17] Vahid Kazemi’s GameProgrammer page: http://www.gameprogrammer.org/

[18] Nate Robins OpenGL tutorials: http://www.xmission.com/~nate/tutors.html

[19] The Redbook sources: http://www.opengl-redbook.com/source/

[20] OpenGL GLUT demos:
http://www.opengl.org/resources/code/samples/glut_examples/demos/demos.html

[21] Paul Bourke’s textured sphere:
http://local.wasp.uwa.edu.au/~pbourke/texture/spheremap/

Tools needed for Tcl3D development:
[22] SWIG (Simplified Wrapper and Interface Generator): http://www.swig.org/

[23] ActiveTcl (Batteries included distribution): http://www.activestate.com/

[24] Starpack Wiki page: http://wiki.tcl.tk/3663

Documentation:
[25] Woo, Neider, Davis: OpenGL Programming Guide, Addison-Wesley, “The Redbook”
[26] OpenGL Wiki page: http://wiki.tcl.tk/2237

Tcl3D User Manual Version 0.3.3, September 2008 Page 60 of 61
Copyright © 2005-2008 by Paul Obermeier. All rights reserved.

http://wiki.tcl.tk/2237
http://wiki.tcl.tk/3663
http://www.activestate.com/
http://www.swig.org/
http://local.wasp.uwa.edu.au/~pbourke/texture/spheremap/
http://www.opengl.org/resources/code/samples/glut_examples/demos/demos.html
http://www.opengl-redbook.com/source/
http://www.xmission.com/~nate/tutors.html
http://www.gameprogrammer.org/
http://www.codesampler.com/
http://nehe.gamedev.net/
http://oss.sgi.com/projects/ogl-sample/sdk.html
http://www.julius.caesar.de/index.php/OglExt
http://www.ode.org/
http://www.geuz.org/gl2ps/
http://www.freetype.org/
http://homepages.paradise.net.nz/henryj/code/index.html
http://www.libsdl.org/
http://developer.nvidia.com/object/cg_toolkit.html
http://sourceforge.net/projects/togl/
http://wiki.tcl.tk/16057
http://wiki.tcl.tk/16057
http://wiki.tcl.tk/15278
http://www.tcl3d.org/

8 References Tcl3D: Doing 3D with Tcl

[27] OpenGL Extension Registry: http://www.opengl.org/registry/

Miscellaneous:
[28] Roger E Critchlow’s Frustum: http://www.elf.org/pub/frustum01.zip

[29] Paul Obermeier's Portable Software: http://www.posoft.de/

Tcl3D User Manual Version 0.3.3, September 2008 Page 61 of 61
Copyright © 2005-2008 by Paul Obermeier. All rights reserved.

http://www.posoft.de/
http://www.elf.org/pub/frustum01.zip
http://www.opengl.org/registry/

	1Introduction
	1.1Architecture overview
	1.2Modules overview
	1.2.1tcl3dTogl: Enhanced Togl widget
	1.2.2tcl3dUtil: Tcl3D utility library
	1.2.3tcl3dOgl: Wrapper for basic OpenGL functionality
	1.2.4tcl3dOglExt: Wrapper for enhanced OpenGL functionality
	1.2.5tcl3dCg: Wrapper for NVidia’s Cg shading language
	1.2.6tcl3dSDL: Wrapper for the Simple DirectMedia Library
	1.2.7tcl3dFTGL: Wrapper for the OpenGL Font Rendering Library
	1.2.8tcl3dGl2ps: Wrapper for the OpenGL To Postscript Library
	1.2.9tcl3dOde: Wrapper for the Open Dynamics Engine
	1.2.10tcl3dGauges: Tcl3D package for displaying gauges
	1.2.11tcl3dDemoUtil: C/C++ based utilities for demo applications

	1.3Supported platforms
	1.4Getting started

	2Installation
	2.1Installation of a binary distribution
	2.1.1Installation from a Tcl3D starpack
	2.1.2Installation from a binary package

	2.2Installation of a source distribution
	2.2.1Step 1: Prerequisites
	2.2.2Step 2: Configuration
	2.2.3Step 3: Customization
	2.2.4Step 4: Compilation and installation

	2.3Extending Tcl3D
	2.3.1General information
	2.3.2Extending with a Tcl utility
	2.3.3Extending with a C/C++ utility
	2.3.4Extending with a newer version of an external library
	2.3.5Extending with a new external library

	3Wrapping in detail
	3.1Wrapping description
	3.1.1Scalar input parameters
	3.1.2Pointer input parameters
	3.1.3Output parameters
	3.1.4Function return values
	3.1.5Exceptions from the standard rules

	3.2Wrapping reference card

	4Modules in detail
	4.1tcl3dTogl: Enhanced Togl widget
	4.1.1Togl commands
	4.1.2Togl options
	4.1.3A simple Tcl3D template

	4.2tcl3dUtil: Tcl3D utility library
	4.2.13D vector and transformation matrix module
	4.2.2Information module
	4.2.3File utility module
	4.2.4Color names module
	4.2.5Large data module
	4.2.6Image utility module
	4.2.7Screen capture module
	4.2.8Timing module
	4.2.9Random number module
	4.2.103D-Model and shapes module
	4.2.11Virtual trackball and arcball module

	4.3tcl3dOgl: Wrapper for basic OpenGL functionality
	4.4tcl3dOglExt: Wrapper for enhanced OpenGL functionality
	4.5tcl3dCg: Wrapper for NVidia’s Cg shading language
	4.6tcl3dSDL: Wrapper for the Simple DirectMedia Library
	4.7tcl3dFTGL: Wrapper for the OpenGL Font Rendering Library
	4.8tcl3dGl2ps: Wrapper for the OpenGL To Postscript Library
	4.9tcl3dOde: Wrapper for the Open Dynamics Engine
	4.10tcl3dGauges: Tcl3D package for displaying gauges
	4.11tcl3dDemoUtil: C/C++ based utilities for demo applications

	5Miscellaneous Tcl3D information
	5.1License information
	5.2Programming hints
	5.3Open issues
	5.4Known bugs
	5.5Starpack internals
	5.5.1Starpack issue #1
	5.5.2Starpack issue #2

	6Demo applications
	7Release notes
	7.1Release history
	7.2Obsolete functions

	8References

