
5th European Tcl/Tk User Meeting May 2005

Doing 3D with Tcl Paul Obermeier Page 1 of 19

Doing 3D with Tcl

Paul Obermeier
obermeier@poSoft.de

Abstract

This paper presents an approach called tclogl, which offers the 3D functionality
of OpenGL at the Tcl scripting level. Tclogl is an improved and enhanced
OpenGL binding based on the work done with Frustum by Roger E Critchlow.
The paper starts with an overview of existing 3D libraries with a Tcl sripting
interface. Different solution approaches are discussed and compared against the
given requirements. The choosen implementation, which relies heavily on SWIG,
is explained in detail in the main section of this paper. Common pitfalls when
programming OpenGL in Tcl, as well as open issues of this approach are shown.
Finally the results of a range of test programs and some demonstration
applications are shown.

1 Overview

Hardware accelerated 3D capabilities are available nowadays on nearly every PC. There is
also a broad range of programming libraries for doing 3D visualization, coming from different
application domains, like simulation, gaming, visualization or animation.
These libraries differ in availability on computer architectures and operating systems,
complexity and richness of supplied functionality, as well as the supported language
bindings.

There are two low-level (light-weight) graphic APIs in common use today: OpenGL and
DirectX. While DirectX from Microsoft is available only on machines running the Windows
operating system, OpenGL is running on PC's as well as on workstations. OpenGL also has
a software-only implementation called "Mesa", so you can run OpenGL based programs
even in virtual machines or over a network. OpenGL libraries are part of all major operating
systems distributions.
DirectX and OpenGL both offer a C based programming interface.

Based on one of these 2 low-level APIs lots of heavy-weight libraries exist, available as
OpenSource implementations as well as commercial versions, adding features like scene-
graphs, image handling, animation, advanced lighting models, etc.
Most of these libraries offer a C/C++ language binding, but only a few of them enable the
user to "script" a 3D application.

Some examples of 3D libraries offering a Tcl language binding are listed in the following
overview. The libraries are divided into the above mentioned categories heavy-weight and
light-weight. Only non-commercial libraries are taken into account.
You may also take a look at the OpenGL related Tcl'ers Wiki page ([5]).

5th European Tcl/Tk User Meeting May 2005

Doing 3D with Tcl Paul Obermeier Page 2 of 19

Name Platforms Source Reference URL
Nebula X11/Win/MacX Yes http://www.nebuladevice.org
Fltk X11/Win/MacX Yes http://www.fltk.org
VRS X11/Win Yes http://www.vrs3d.org
VTK X11/Win/MacX Yes http://public.kitware.com/VTK
tk3d X11/Win Yes http://www.gm.com/company/careers/

career_paths/rnd/lab_manuf_sw.html
Table 1: List of heavy-weight 3D libraries with Tcl binding

Name Platforms Source Reference URL
Glut/Tk X11/Win Yes http://zing.ncsl.nist.gov/gluttk
Tkogl X11/Win Yes http://hct.ece.ubc.ca/research/tkogl/tkogl
togl X11/Win/MacX Yes http://togl.sourceforge.net
Frustum X11/Win Yes http://www.elf.org/pub/frustum01.zip
XBit Win No http://www.geocities.com/~chengye/

opengl.html
tom X11/Win Yes http://sourceforge.net/projects/om2t

Table 2: List of light-weight 3D libraries with Tcl binding

The following short excerpts from the libraries’ home pages should act as a brief introduction
and overview of their capabilities.

Nebula Device is an open source realtime 3D game/visualization engine, written in
C++. Version 2 is a modern rendering engine making full use of shaders. It is scriptable
through TCL/Tk and Lua, with support for Python, Java, and the full suite of .NET-capable
languages pending. It currently supports DirectX 9, with support for OpenGL in the works.
It runs on Windows, with ports being done to Linux and Mac OS X.

FLTK (pronounced "fulltick") is a cross-platform C++ GUI toolkit for UNIX®/Linux®
(X11), Microsoft® Windows®, and MacOS® X. FLTK provides modern GUI functionality
without the bloat and supports 3D graphics via OpenGL® and its built-in GLUT emulation.

The Virtual Rendering System is a computer graphics software library for
constructing interactive 3D applications. It provides a large collection of 3D rendering
components which facilitate implementing 3D graphics applications and experimenting
with 3D graphics and imaging algorithms. VRS is implemented as a C++ library.
Applications can incorporate VRS as C++ library based on the C++ API. In addition, we
provide a complete Tcl/Tk binding of the C++ API, called iVRS.

The Visualization ToolKit (VTK) is an open source, freely available software system
for 3D computer graphics, image processing, and visualization used by thousands of
researchers and developers around the world. VTK consists of a C++ class library, and
several interpreted interface layers including Tcl/Tk, Java, and Python.

Tk3D is a collection of extensions to Tcl/Tk that allow Tcl/Tk applications to
manipulate large numerical arrays and generate 3D graphic displays. The Tk3D suite
contains five packages, named Tns, Vtd, Fct, Fctr, and Tnsph. The "Tns" (tensor)
package is a numerical array extension. It provides facilities for efficiently manipulating
multidimensional arrays of numbers within Tcl. The Vtd package provides a Tk widget,
called a view3d widget, in which to display 3D graphic images. This widget's functionality
can be extended by adding "renderers," which are programs, written in C, for drawing
objects in a view3d widget.

5th European Tcl/Tk User Meeting May 2005

Doing 3D with Tcl Paul Obermeier Page 3 of 19

GLUT/Tk is a "light-weight" system that seeks to leverage GLUT and Tcl/Tk by tying
them together in a stylistically consistent way with the addition of only a few commands to
each. The basic implementation strategy is to enable a GLUT process to launch an
independent Tk script. Thus, the built-in event loops of these two systems can operate as
usual and the resulting programming style (registering callbacks for given events) is
unchanged.

TkOGL is a package extension to the Tcl scripting language that enables a user to
utilize OpenGL, a multi-platform API for interactive 2D and 3D graphics applications.
TkOGL makes it possible for the user to display OpenGL graphics on the Tk canvas
along with other Tk widgets.

Togl is a Tk widget for OpenGL rendering. Togl allows one to create and manage a
special Tk/OpenGL widget with Tcl and render into it with a C program. That is, a typical
Togl program will have Tcl code for managing the user interface and a C program for
computations and OpenGL rendering.

Frustum implements a specialization of the Togl widget and a Swig generated Tcl
binding for the opengl and glu libraries to allow 3d modelling to be done entirely from Tcl.

XBit has implemented a Tcl shell for OpenGL primatives at Windows platforms.
The implementation focuses on scriptive programing in OpenGL rendering with an
emphasis on code reusability and GUI. It provides an OpenGL rendering engine whose
states can be changed with a greater flexibility during execution.

Tom is an OpenGL wrapper for Tcl/Tk. It provides Tcl procs very close to OpenGL
C functions.

2 Wish and reality

2.1 Requirements

As has been shown in the previous chapter, a number of 3D libraries with Tcl bindings are
currently available. But none of them fulfilled my personal wish list for a Tcl enabled 3D
library: It should give me the ability to integrate small- to medium- sized 3D content into my
Tcl/Tk based graphical user interfaces.

The prefered candidate should be an OpenGL based light-weight package, because OpenGL
is available on nearly every platform. 3D functionality should be scriptable with Tcl
commands and it should be possible to extend the functionality with C code. Graphical output
should be displayed in a Tk widget.

The following table summarizes the requirements of my favourite Tcl-3D library.

Requirement Comment
1 Light-weight Small code size, Tcl package.
2 License Source code availability under BSD license.
3 High automation No need to write lots of wrapper/glue code.

Easy upgrade to newer versions of the 3D library.
4 Portable Availability on many platforms.
5 C and Tcl IF Ability to program the library in both C and Tcl.

Easy interchange between Tcl and C code.
6 Up to date Buildable with actual tools and operating systems.

Table 3: Requirements for the Tcl 3D-library

5th European Tcl/Tk User Meeting May 2005

Doing 3D with Tcl Paul Obermeier Page 4 of 19

2.2 Discussion of available solutions

Glut/Tk uses the GLUT library. Although GLUT is available on different platforms, it has not
been actively supported for quite some time. GLUT contains lot of operating system
dependent code covering features like event handling or simple menus, features that are
already handled by Tk.

Tom has not been updated for a while and consists of a hand-crafted interface to OpenGL.

Togl allows programming OpenGL in C only.

X-Bit is not available as source code.

Out of the 6 possible solutions listed in Table 2 the following packages left over for a more
detailled inspection:

Tkogl, currently maintained by the University of British Columbia in Vancouver and Frustum
by Roger E Critchlow Jr, which is not maintained by the author anymore.

Both have a very similar approach: Wrap the OpenGL core libraries GL and GLU with SWIG
([6]), and display the contents in a Tk widget.

The next table lists the features which didn’t fit my requirements:

TkOgl Frustum
Use of old SWIG version 1.1 Yes Yes
OpenGL header files modified Yes Yes
Handcrafted tables for mapping GLenums Yes No

SWIG 1.1 is not supported any more and may be not available on newer versions of
operating systems. The current SWIG version is 1.3.24 and this version offers lots of new
features.

Edited OpenGL header files need manual changes when compiling on platforms with a
newer OpenGL version, otherwise the additional commands are not available. Changes in
the API have to be done by hand, too.

OpenGL declares a bunch of enumerations, as can be seen in the following table. These
differ from platform to platform and keeping them up-to-date manually for the different
platforms and versions would not be reasonable.

GL_VENDOR SGI Microsoft Corporation
GL_VERSION 1.1 Irix 6.5 1.1.0
GLU_VERSION 1.2 Irix 6.5 1.2.2.0 Microsoft Corporation
Number of gl commands 485 352
Number of glu commands 68 67
Number of gl enums 1041 588
Number of glu enums 138 116

So the final decision was to follow the Frustum approach, which only needed two parts to be
cleaned up and extended.

5th European Tcl/Tk User Meeting May 2005

Doing 3D with Tcl Paul Obermeier Page 5 of 19

3 Implementation

3.1 SWIG-based OpenGL wrapper

The first task was to create a language binding for the OpenGL core libraries GL and GLU
with the help of SWIG ([6]). As stated earlier, it should work with an actual version of SWIG
and the OpenGL header files should not be touched.

Due to the new version of SWIG and it’s extended typemap features it was possible to
generate a consistent mapping between C functions and equivalent Tcl commands without
changing the OpenGL header files gl.h and glu.h.

The following tables show, how parameters and return values of the C based OpenGL
functions are mapped to Tcl command parameters and return values. Every type of
parameter is explained with a typical example.

Note:
• The notation TYPE stands for any scalar value (GLboolean, GLbyte, GLubyte,

GLshort, GLushort, GLint, GLuint, GLfloat, GLdouble). It is not used for
type void.

• The notation STRUCT stands for any C struct.

5th European Tcl/Tk User Meeting May 2005

Doing 3D with Tcl Paul Obermeier Page 6 of 19

Input parameter GLenum
C declaration void glEnable (GLenum cap);

C example glEnable (GL_BLEND);

Tcl example glEnable GL_BLEND
glEnable $::GL_BLEND

GLenum as an OpenGL function input parameter can be supplied as numerical value or as
name.

Input parameter GLbitfield
C declaration void glClear (GLbitfield mask);

C example glClear (GL_COLOR_BUFFER_BIT);

Tcl example glClear GL_COLOR_BUFFER_BIT
glClear $::GL_COLOR_BUFFER_BIT

GLbitfield as an OpenGL function input parameter can be supplied as numerical value or
as name.

Note:
• A combination of bit masks has to be specified as a numerical value like this:

glClear [expr $::GL_COLOR_BUFFER_BIT | $::GL_DEPTH_BUFFER_BIT]

Input parameter GLboolean
C declaration void glEdgeFlag (GLboolean flag);

C example glEdgeFlag (GL_TRUE);

Tcl example glEdgeFlag GL_TRUE
glEdgeFlag $::GL_TRUE

GLboolean as an OpenGL function input parameter can be supplied as numerical value or
as name.

The mapping of the types GLenum, GLbitfield and GLboolean is handled in file
consthash.i.

Input parameter TYPE
C declaration void glTranslatef (GLfloat x, GLfloat y, GLfloat z);

C example glTranslatef (1.0, 2.0, 3.0);
glTranslatef (x, y, z);

Tcl example glTranslatef 1.0 2.0 3.0
glTranslatef $x $y $z

Scalar types as an OpenGL function input parameter must be supplied as numerical value.

The mapping of scalar types is handled by the SWIG standard typemaps.

5th European Tcl/Tk User Meeting May 2005

Doing 3D with Tcl Paul Obermeier Page 7 of 19

Input parameter const TYPE[SIZE], const TYPE *
C declaration void glMaterialfv (GLenum face, GLenum pname,

 const GLfloat *params);

C example GLfloat mat_diffuse = { 0.7, 0.7, 0.7, 1.0 };
glMaterialfv (GL_FRONT, GL_DIFFUSE, mat_diffuse) ;

Tcl example set mat_diffuse { 0.7 0.7 0.7 1.0 }
glMaterialfv GL_FRONT GL_DIFFUSE $mat_diffuse

Constant pointers as an OpenGL function input parameter must be supplied as a Tcl list.

The mapping of const TYPE pointers is handled in file autoarray.i.

Note:
• This type of parameter is typically used to specify small vectors (2D, 3D and 4D) as

well as control points for NURBS.
• Unlike in the C version, specifying data with the scalar version of a function (ex.

glVertex3f) is faster than the vector version (ex. glVertex3fv) in Tcl.
• Note, that Tcl lists given as parameters to an OpenGL function have to be flat, i.e.

they are not allowed to contain sublists. When working with lists of lists, you have to
flatten the list, before supplying it as an input parameter to an OpenGL function. One
way to do this is shown in the example below.

set ctrlpoints {
 {-4.0 -4.0 0.0} {-2.0 4.0 0.0}
 { 2.0 -4.0 0.0} { 4.0 4.0 0.0}

}
glMap1f GL_MAP1_VERTEX_3 0.0 1.0 3 4 [join $::ctrlpoints]

Input parameter const GLvoid *
C declaration void glVertexPointer (GLint size, GLenum type,

 GLsizei stride, const GLvoid *ptr);

C example
static GLint vertices[] =
 { 25, 25, 100, 325, 175, 25,
 175, 325, 250, 25, 325, 325};
glVertexPointer (2, GL_INT, 0, vertices);

Tcl example
set vertices [VectorFromArgs GLint \
 25 25 100 325 175 25 \
 175 325 250 25 325 325]
glVertexPointer 2 GL_INT 0 $::vertices

Constant void pointers as an OpenGL function parameter must be given as a pointer to a
contiguous piece of memory of appropriate size.

The mapping of const void pointers is handled by the SWIG standard typemaps.

Note:
• The allocation of useable memory can be accomplished with the use of the Vector

command, which is described later in this chapter.
• This type of parameter is typically used to supply image data or vertex arrays. See

also the description of the Tk photo mapping later in this chapter.

5th European Tcl/Tk User Meeting May 2005

Doing 3D with Tcl Paul Obermeier Page 8 of 19

Output parameter TYPE *, GLvoid *

C declaration

void glGetFloatv (GLenum pname, GLfloat *params);

void glReadPixels (GLint x, GLint y, GLsizei width,
 GLsizei height, GLenum format,
 GLenum type, GLvoid *pixels);

C example

GLfloat values[2];
glGetFloatv (GL_LINE_WIDTH_GRANULARITY, values);

GLubyte *vec = malloc (w * h * 3);
glReadPixels (0, 0, w, h, GL_RGB, GL_UNSIGNED_BYTE, vec);

Tcl example

set values [Vector GLfloat 2]
glGetFloatv GL_LINE_WIDTH_GRANULARITY $values

set vec [Vector GLubyte [expr $w * $h * 3]]
glReadPixels 0 0 $w $h GL_RGB GL_UNSIGNED_BYTE $vec

Non-constant pointers as an OpenGL function parameter must be given as a pointer to a
contiguous piece of memory of appropriate size.

The mapping of non-constant pointers is handled by the SWIG standard typemaps.

Function return TYPE, STRUCT *

C declaration
GLuint glGenLists (GLsizei range);

GLUnurbs* gluNewNurbsRenderer (void);

C example
GLuint sphereList = glGenLists(1);

GLUnurbsObj *theNurb = gluNewNurbsRenderer();
gluNurbsProperty (theNurb, GLU_SAMPLING_TOLERANCE, 25.0);

Tcl example
set sphereList [glGenLists 1]

set theNurb [gluNewNurbsRenderer]
gluNurbsProperty $theNurb GLU_SAMPLING_TOLERANCE 25.0

Scalar return values are returned as the numerical value.
Pointer to structs are returned with the standard SWIG mechanism of encoding the pointer in
an ASCII string.

The mapping of return values is handled by the SWIG standard typemaps.

Note:
• The next lines show an example of SWIG’s pointer encoding:

% set theNurb [gluNewNurbsRenderer]
% puts $theNurb
_10fa1500_p_GLUnurbs

The returned name can only be used in functions expecting a pointer to the appropriate
struct.

5th European Tcl/Tk User Meeting May 2005

Doing 3D with Tcl Paul Obermeier Page 9 of 19

Exceptions from the standard rules

The GLU library as specified in header file glu.h does not provide an API, that is as
consistent as the GL core library. So one class of function parameters (TYPE *) is handled
differently with GLU functions. Arguments of type TYPE* are used both as input and output
parameters in the C version. In GLU 1.2, which is the current version, most functions use this
type as input parameter. Only two functions use this type as an output parameter.
So for GLU functions there is the exception, that TYPE* is considered an input parameter and
therefore is wrapped as a Tcl list.

Input parameter TYPE * (GLU only)

C declaration
void gluNurbsCurve (GLUnurbs *nobj, GLint nknots,
 GLfloat *knot, GLint stride,
 GLfloat *ctlarray, GLint order,
 GLenum type);

C example

GLfloat curvePt[4][2] = {{0.25, 0.5}, {0.25, 0.75},
 {0.75, 0.75}, {0.75, 0.5}};
GLfloat curveKnots[8] = {0.0, 0.0, 0.0, 0.0,
 1.0, 1.0, 1.0, 1.0};
gluNurbsCurve (theNurb, 8, curveKnots, 2,
 &curvePt[0][0], 4, GLU_MAP1_TRIM_2);

Tcl example
set curvePt {0.25 0.5 0.25 0.75 0.75 0.75 0.75 0.5}
set curveKnots {0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0}
gluNurbsCurve $theNurb 8 $curveKnots 2 $curvePt 4
 GLU_MAP1_TRIM_2

The two aforementioned functions, which provide output parameters with TYPE* are
gluProject and gluUnProject. These are handled as a special case in the SWIG
interface file glu.i. The 3 output parameters are given the keyword OUTPUT, so SWIG
handles them in a special way: SWIG builds a list consisting of the normal function return
value, and all parameters marked with that keyword. This list will be the return value of the
corresponding Tcl command.

Definition in glu.h Redefinition in SWIG interface file glu.i
extern GLint gluUnProject (

GLdouble winX, GLdouble winY,
GLdouble winZ,
const GLdouble *model,
const GLdouble *proj,
const GLint *view,
GLdouble* objX,
GLdouble* objY,
GLdouble* objZ);

GLint gluUnProject (
GLdouble winX, GLdouble winY,
GLdouble winZ,
const GLdouble *model,
const GLdouble *proj,
const GLint *view,
GLdouble* OUTPUT,
GLdouble* OUTPUT,
GLdouble* OUTPUT);

Example usage (see Redbook ([1]) example unproject.tcl for complete code):

glGetIntegerv GL_VIEWPORT $viewport
glGetDoublev GL_MODELVIEW_MATRIX $mvmatrix
glGetDoublev GL_PROJECTION_MATRIX $projmatrix
set viewList [VectorToList $viewport 4]
set mvList [VectorToList $mvmatrix 16]
set projList [VectorToList $projmatrix 16]

set realy [expr [$viewport get 3] - $y - 1]
set winList [gluUnProject $x $realy 0.0 $mvList $projList $viewList]
puts "gluUnProject return value: [lindex $winList 0]"
puts [format "World coords at z=0.0 are (%f, %f, %f)" \
 [lindex $winList 1] [lindex $winList 2] [lindex $winList 3]]

5th European Tcl/Tk User Meeting May 2005

Doing 3D with Tcl Paul Obermeier Page 10 of 19

3.2 Extension of the Togl widget

Now that we have a Tcl binding of the OpenGL functionality, we need to be able to display
the 3D contents.

Togl is an actively maintained Tk widget with support to display OpenGL graphics, but the
drawing commands have to be specified in C.
To be usable from the Tcl level, it has been extended to support 3 new configuration options
for specifying Tcl callback commands:

-createproc TclCommandName Called when a new widget is created.
-reshapeproc TclCommandName Called when the widget's size is changed.
-displayproc TclCommandName Called when the widget's content needs to be redrawn.

These configuration options behave like standard Tcl options as shown in the example
below:

% package require Togl
1.6
% togl .t
% .t configure -displayproc tclDisplayFunc
% .t configure -displayproc
-displayproc displayproc Displayproc {} tclDisplayFunc

So a minimal 3D application looks like the following “Hello, World” OpenGL program.

hello.tcl

package require tclogl
package require Togl

proc tclDisplayFunc { toglwin } {
 glClear GL_COLOR_BUFFER_BIT

 # draw white polygon (rectangle) with corners at
 # (0.25, 0.25, 0.0) and (0.75, 0.75, 0.0)
 glColor3f 1.0 1.0 1.0
 glBegin GL_POLYGON
 glVertex3f 0.25 0.25 0.0
 glVertex3f 0.75 0.25 0.0
 glVertex3f 0.75 0.75 0.0
 glVertex3f 0.25 0.75 0.0
 glEnd
 glFlush
}

proc tclCreateFunc { toglwin } {
 # select clearing color
 glClearColor 0.0 0.0 0.0 0.0

 # initialize viewing values
 glMatrixMode GL_PROJECTION
 glLoadIdentity
 glOrtho 0.0 1.0 0.0 1.0 -1.0 1.0
}

proc tclReshapeFunc { toglwin w h } {
 $toglwin postredisplay
}

5th European Tcl/Tk User Meeting May 2005

Doing 3D with Tcl Paul Obermeier Page 11 of 19

frame .fr
pack .fr -expand 1 -fill both
togl .fr.toglwin -width 250 -height 250 -double false \
 -createproc tclCreateFunc \
 -displayproc tclDisplayFunc \
 -reshapeproc tclReshapeFunc
grid .fr.toglwin -row 0 -column 0 -sticky news

bind . <Key-Escape> "exit"

Note that –createproc is not effective, when specified in the configure subcommand. It has
to be specified at widget creation time.

The changes in the widget code allow Togl to execute Tcl callbacks with the help of Tcl_Eval,
while still maintaining 100% of it's original functionality. Only a few lines had to be added or
changed in the Togl source code:

1. Add the 3 new configuration options to the Tk_ConfigSpec list.
2. Declaration and definition of the 3 new internal evaluation functions: tcloglCreateProc,

tcloglDisplayProc, tcloglReshapeProc.
3. Change the default callbacks to point to the new internal evaluation functions.

These 3 changes are shown with the create callback as example:

1.
{TK_CONFIG_STRING|TK_CONFIG_NULL_OK, "-createproc", "createproc",
"Createproc", NULL, Tk_Offset(struct Togl, createCallback), 0, NULL},

2.
 static int tcloglCreateProc (struct Togl *togl) {
 if (togl->createCallback) {
 if (Tcl_Eval (Togl_Interp(togl), togl->createCallback) != TCL_OK) {
 Tcl_BackgroundError (Togl_Interp(togl));
 free (togl->createCallback);
 togl->createCallback = NULL;
 return TCL_ERROR;
 }
 }
 return TCL_OK;
 }

3.
 static Togl_Callback *DefaultCreateProc = tcloglCreateProc;

5th European Tcl/Tk User Meeting May 2005

Doing 3D with Tcl Paul Obermeier Page 12 of 19

3.3 Utility functions

All of the features listed in this chapter are not necessary for operation, but offer extended or
easier functionality.

3.3.1 The Vector command

As stated in chapter 3.1, some of the OpenGL functions need a pointer to a contiguous block
of allocated memory. SWIG already provides a feature to automatically generate wrapper
functions for allocating and freeing memory of any type. This feature %array_functions
also creates setter and getter functions for accessing the allocated memory.

The following definitions provided in file tclogl.i create the accessor functions for the
OpenGL base types:

// Generate array functions (new, delete, getitem, setitem) for the
// following types.

%array_functions(unsigned char,GLboolean)
%array_functions(signed char,GLbyte)
%array_functions(unsigned char,GLubyte)
%array_functions(short,GLshort)
%array_functions(unsigned short,GLushort)
%array_functions(int,GLint)
%array_functions(unsigned int,GLuint)
%array_functions(float,GLfloat)
%array_functions(double,GLdouble)

The generated wrapper code looks like this (Example shown for GLdouble):

static double *new_GLdouble(int nelements) {
 return (double *) calloc(nelements,sizeof(double));
}

static void delete_GLdouble(double *ary) {
 free(ary);
}

static double GLdouble_getitem(double *ary, int index) {
 return ary[index];
}

static void GLdouble_setitem(double *ary, int index, double value) {
 ary[index] = value;
}

The file tcloglVector.tcl contains additional Tcl commands for encapsulation of these low-
level accessor functions.

Tcl command Explanation
Vector Call the memory allocation routine new_* and create an OO like

Tcl interface. (See example below)
VectorFromList Create a new Vector from given Tcl list.
VectorFromArgs Create a new Vector from given aruments.
VectorFromString Create a new GLubyte Vector from given string.
VectorToString Copy the contents of a GLubyte Vector into a string.
VectorToList Copy the contents of a Vector into a Tcl list.

5th European Tcl/Tk User Meeting May 2005

Doing 3D with Tcl Paul Obermeier Page 13 of 19

The following example shows the usage of the base Vector command.

set ind 23
set vec [Vector GLfloat 123] ; # Create a new Vector of size 123 GLfloats
set x [$vec get $ind] ; # Get element at index 23
$vec set $ind 1017.0 ; # Set element at index 23 to 1017.0
$vec delete ; # Free the allocated memory

3.3.2 Information utilities

In file tcloglInfo.tcl three utility functions are currently implemented to get information about
the OpenGL version, the installed extensions, as well as the current OpenGL state.

tcloglGetVersions

Query the OpenGL library with the keys GL_VENDOR,
GL_RENDERER, GL_VERSION, GLU_VERSION and return the
results as a list of key-value pairs.

The following code snippet shows how to call tcloglGetVersions and place the result in
a text widget.

foreach glInfo [tcloglGetVersions] {
 set msgStr "[lindex $glInfo 0]: [lindex $glInfo 1]\n"
 $textId insert end $msgStr
}

Example output of glGetVersions Example output of glGetVersions on SGI/Linux

tcloglGetExtensions

Query the OpenGL library with the keys GL_EXTENSIONS and
GLU_EXTENSIONS and return the results as a list of key-value
pairs.

The following code snippet shows how to call tcloglGetExtensions and place the result
in a text widget.

foreach glInfo [tcloglGetExtensions] {
 set msgStr "[lindex $glInfo 0]\n"
 $textId insert end $msgStr type
 foreach ext [lsort [split [string trim [lindex $glInfo 1]]]] {
 set msgStr "$ext\n"
 $textId insert end $msgStr name
 }
}

5th European Tcl/Tk User Meeting May 2005

Doing 3D with Tcl Paul Obermeier Page 14 of 19

tcloglGetStates

Query all state variables of the OpenGL library and return the
results as a list of sub-lists. Each sublist contains the querying
command used, the key and the value(s).

The following code snippet shows how to call tcloglGetStates and place the result in a
text widget.

foreach glState [tcloglGetStates] {
 set msgStr "[lindex $glState 1]: [lrange $glState 2 end]\n"
 if { [string compare [lindex $glState 0] "glIsEnabled"] == 0 } {
 set tag bool
 } else {
 set tag other
 }
 $textId insert end $msgStr $tag
}

Example output of glGetExtensions Example output of glGetStates

Note:
The functions glGetString and gluGetString as well as the corresponding high-level
functions tcloglGetVersions and tcloglGetExtensions only return correct values, if
a Togl window has been opened, i.e. a rendering context has been established.

3.3.3 Tk photo mapping

In file tkphoto.i the following C functions are implemented to provide access to the Tk photo
image functionality.

Tcl command Usage
PhotoChans Return the nuber of channels of a Tk photo.
Photo2Vector Copy a Tk photo into a Vector in OpenGL raw image format. The

Vector must have been allocated with the approriate size and type.
Vector2Photo Copy from OpenGL raw image format into a Tk photo. The photo image

must have been initialized with the appropriate size and type.

These functions are best explained by looking at the following code excerpts from the simple
image viewer imgViewer.tcl:

5th European Tcl/Tk User Meeting May 2005

Doing 3D with Tcl Paul Obermeier Page 15 of 19

Example 1: Read an image into a Tk photo and use it as a texture map. Note: Texture map
images must have width and height, that are multiples of 2.

proc ReadImg { imgName } {
 global gPo

 set retVal [catch {set phImg [image create photo -file $imgName]} err1]
 if { $retVal != 0 } {
 puts "Failure reading image $imgName"
 } else {
 set w [image width $phImg]
 set h [image height $phImg]
 set sqr [GetBestSquare $w $h]
 set gPo(texScaleS) [expr double ($w) / $sqr]
 set gPo(texScaleT) [expr double ($h) / $sqr]
 set sqrPhoto [image create photo -width $sqr -height $sqr]
 $sqrPhoto copy $phImg -from 0 0 $w $h -to 0 [expr $sqr -$h]
 update
 set vecImg [Vector GLubyte [expr $sqr * $sqr * 4]]
 Photo2Vector $sqrPhoto $vecImg
 image delete $phImg
 image delete $sqrPhoto
 glTexParameteri GL_TEXTURE_2D GL_TEXTURE_WRAP_S $::GL_CLAMP
 glTexParameteri GL_TEXTURE_2D GL_TEXTURE_WRAP_T $::GL_CLAMP
 glTexParameteri GL_TEXTURE_2D GL_TEXTURE_MAG_FILTER $::GL_NEAREST
 glTexParameteri GL_TEXTURE_2D GL_TEXTURE_MIN_FILTER $::GL_NEAREST
 glTexImage2D GL_TEXTURE_2D 0 4 \
 $sqr $sqr \
 0 GL_RGBA GL_UNSIGNED_BYTE $vecImg
 tclDisplayFunc
 }
}

Example 2: Read an image from the OpenGL framebuffer and save it with the Img library.

proc SaveImg { imgName } {
 global gPo

 set w $gPo(toglWidth)
 set h $gPo(toglHeight)
 set numChans 4
 set vec [Vector GLubyte [expr $w * $h * $numChans]]
 glReadPixels 0 0 $w $h GL_RGBA GL_UNSIGNED_BYTE $vec
 set ph [image create photo -width $w -height $h]
 Vector2Photo $vec $ph $w $h $numChans
 set fmt [string range [file extension $imgName] 1 end]
 $ph write $imgName -format $fmt
}

The actual size of the Togl window (gPo(toglWidth), gPo(toglHeight)), which is
needed in command SaveImg, can be saved in a global variable when the reshape callback
is executed.

proc tclReshapeFunc { toglwin w h } {
 global gPo

 set gPo(toglWidth) $w
 set gPo(toglHeight) $h
 ...
}

5th European Tcl/Tk User Meeting May 2005

Doing 3D with Tcl Paul Obermeier Page 16 of 19

3.3.4 Additional tclogl utilities

The utilities in this chapter have been added for testing and demonstration purposes.

GLUT shapes library

The shape objects implemented in the GLUT library are available under the same names for
running the test programs of the OpenGL redbook ([1]).

Solid shapes Wire shapes
glutSolidCube glutWireCube
glutSolidCone glutWireCone
glutSolidSphere glutWireSphere
glutSolidTorus glutWireTorus
glutSolidTetrahedron glutWireTetrahedron
glutSolidOctahedron glutWireOctahedron
glutSolidDodecahedron glutWireDodecahedron
glutSolidIcosahedron glutWireIcosahedron
glutSolidTeapot glutWireTeapot

Some GLUT shapes Quadrics examples

The shapes library consists of the C files (teapot.c for the teapot, shapes.c for all other
shapes and the common header file shapes.h) and the Tcl file tcloglShapes.tcl.

The shape library also acts as a demonstration, how to extend the tclogl package with C
code.
The steps necessary are:

1. Compile your C source files (shapes.c, teapot.c)
2. Put the name of the header file (shapes.h) into SWIG interface file util.i.
3. Call SWIG to create a new wrapper file.
4. Relink your dynamic library with the new object files (shapes.o, teapot.o).

5th European Tcl/Tk User Meeting May 2005

Doing 3D with Tcl Paul Obermeier Page 17 of 19

Alias/Wavefront modelfile reader

A simple viewer for 3D models has been implemented in objViewer.tcl
It can read model files in Alias/Wavefront format. The code to read and draw the models is
taken from Nate Robin's OpenGL tutorial ([4]). The corresponding files are glm.c and glm.h.

Smooth shaded model file Line drawing of model file

4 Caveats / Common pitfalls

Some OpenGL functions expect an integer or floating point value, which is often given in C
code examples with an enumeration, as shown in the next example:

extern void glTexParameteri (GLenum target, GLenum pname, GLint param);

It is called in C typically as follows:
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);

As the 3rd parameter is not of type GLenum, you have to specify the numerical value here:
glTexParameteri GL_TEXTURE_2D GL_TEXTURE_WRAP_S $::GL_REPEAT
glTexParameteri GL_TEXTURE_2D GL_TEXTURE_MAG_FILTER $::GL_NEAREST

If called with the enumeration name:
glTexParameteri GL_TEXTURE_2D GL_TEXTURE_WRAP_S GL_REPEAT
you will get an error message like this: expected integer but got "GL_REPEAT"

To correctly wrap the OpenGL libraries, a version of SWIG greater or equal to 1.3.19 is
needed.

For performance reasons use OpenGL display lists, where possible.

5th European Tcl/Tk User Meeting May 2005

Doing 3D with Tcl Paul Obermeier Page 18 of 19

5 Open issues

• GLU callbacks are currently not supported. This implies, that tesselation does not
work, because this functionality relies heavily on the usage of C callback functions.

• There is currently no possibility to specify a color map for OpenGL indexed mode. As
color maps depend on the underlying windowing system, this feature should be
handled by the Togl widget.

• Picking with depth values does not work correctly, as depth is returned as an
unsigned int, mapping the internal floating-point depth values [0.0 .. 1.0] to the range
[0 .. 232 –1]. As Tcl only supports signed integers, some depth values are incorrectly
transferred into the Tcl commands.

• The handling of Tcl errors inside of Togl callbacks could be improved.
• To evaluate the Tcl callbacks, Tcl_Eval is currently used, which does not compile the

script into bytecode. Use the object-interface instead.

6 Results

To test the correctness and completeness of the wrapped OpenGL library, the examples of
the Redbook ([1]), which are available as C code ([2]), were ported into equivalent Tcl code.

The Redbook contains 56 examples, showing many aspects of OpenGL features.
52 of them have been successfully converted into equivalent Tcl scripts and compared on
different computers against the C version. All of them gave identical results, except depth-
picking in some cases (see above).

Two of the missing four examples deal with tesselation, which is currently not supported, as
stated in the previous chapter. The other two test programs not yet ported deal with color
index mode, which is not yet implemented, too.
Tesselation and color index mode both are rarely used features, at least in my applications.

Redbook example fog.tcl Redbook example texgen.tcl

5th European Tcl/Tk User Meeting May 2005

Doing 3D with Tcl Paul Obermeier Page 19 of 19

To demonstrate the easy transition of C to Tcl code, a more complex program, the "Atlantis
demo" ([3]) has been ported. It behaves like it's C pendant, but performs a lot slower, as it
has been not been optimized for running as a Tcl script.

Finally a simple image viewer has been implemented that allows realtime scaling of the
image. The images can be read from files in all formats supported by the Img extension. The
stretched image may also be written out to an image file.

The Togl and tclogl packages have been generated and tested on the following platfoms:

Operating system Compiler version SWIG version
Windows XP Visual C++ 6.0 1.3.19
SuSE Linux 9.0 gcc 3.3.1 1.3.19
IRIX 6.5 MIPSpro cc 7.30 1.3.24

The source code for the tclogl package, i.e. the modified Togl code and the SWIG interface
files for the OpenGL wrapper, as well as the test and demo programs can be downloaded
from my home page ([7]). A binary version of the actual SWIG version 1.3.24 for IRIX is
available there, too.

7 References

[1] Woo, Neider, Davis: OpenGL Programming Guide, Addison-Wesley, “The Redbook”

[2] Redbook C examples: http://www.opengl.org/resources/code/basics/redbook

[3] Atlantis demo: http://www.opengl.org/resources/code/glut/glut_examples/demos/demos.html

[4] Nate Robins OpenGL tutorial: http://www.xmission.com/~nate/tutors.html

[5] OpenGL Wiki page: http://wiki.tcl.tk/2237

[6] SWIG (Simplified Wrapper and Interface Generator): http://www.swig.org

[7] Paul Obermeier's Portable Software: http://www.poSoft.de

	Overview
	Wish and reality
	Requirements
	Discussion of available solutions

	Implementation
	SWIG-based OpenGL wrapper
	Extension of the Togl widget
	Utility functions
	The Vector command
	Information utilities
	Tk photo mapping
	Additional tclogl utilities

	Caveats / Common pitfalls
	Open issues
	Results
	References

